675 research outputs found

    Location Management in IP-based Future LEO Satellite Networks: A Review

    Full text link
    Future integrated terrestrial, aerial, and space networks will involve thousands of Low Earth Orbit (LEO) satellites forming a network of mega-constellations, which will play a significant role in providing communication and Internet services everywhere, at any time, and for everything. Due to its very large scale and highly dynamic nature, future LEO satellite networks (SatNets) management is a very complicated and crucial process, especially the mobility management aspect and its two components location management and handover management. In this article, we present a comprehensive and critical review of the state-of-the-art research in LEO SatNets location management. First, we give an overview of the Internet Engineering Task Force (IETF) mobility management standards (e.g., Mobile IPv6 and Proxy Mobile IPv6) and discuss their location management techniques limitations in the environment of future LEO SatNets. We highlight future LEO SatNets mobility characteristics and their challenging features and describe two unprecedented future location management scenarios. A taxonomy of the available location management solutions for LEO SatNets is presented, where the solutions are classified into three approaches. The "Issues to consider" section draws attention to critical points related to each of the reviewed approaches that should be considered in future LEO SatNets location management. To identify the gaps, the current state of LEO SatNets location management is summarized. Noteworthy future research directions are recommended. This article is providing a road map for researchers and industry to shape the future of LEO SatNets location management.Comment: Submitted to the Proceedings of the IEE

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Mobile Oriented Future Internet (MOFI)

    Get PDF
    This Special Issue consists of seven papers that discuss how to enhance mobility management and its associated performance in the mobile-oriented future Internet (MOFI) environment. The first two papers deal with the architectural design and experimentation of mobility management schemes, in which new schemes are proposed and real-world testbed experimentations are performed. The subsequent three papers focus on the use of software-defined networks (SDN) for effective service provisioning in the MOFI environment, together with real-world practices and testbed experimentations. The remaining two papers discuss the network engineering issues in newly emerging mobile networks, such as flying ad-hoc networks (FANET) and connected vehicular networks

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    Artificial Intelligence to Manage Network Traffic of 5G Wireless Networks

    Get PDF

    Implementación de un sistema SDN para la movilidad en redes OMNIRAN

    Get PDF
    This document details all the information needed to understand and test distributed mobility management using the SDN paradigm. This project stars by an analysis of the mobility problem in dense networks. Traditionally mobility has been managed with hierarchical approaches extending the current mobility protocols. But thinking in the future evolution of the network into dense environments some scalability problems appear. The traditional centralized elements may not be able to handle all the traffic in the network and bottlenecks appear at the Mobility Anchors. Nowadays, the problems related to scalability are mostly resolved with hardware upgrades, but in dense environments this couldn’t be enough and surely it would be quite expensive. To find a solution to this problem the IETF has chartered the Distributed Mobility Management (DMM) Group.This project focus on implementing a DMM-based mobility solution designed within the EU FP7 CROWD project. Once the analysis of the problem ended and the requirements of the theoretical solution were defined, we developed all the necessary elements to physically build a distributed network using SDN to manage layer 2 and layer 3.The entities of the network are defined by the CROWD projectin its related publications[9][10]. These districts were run using an SDN implementation called OpenFlow. With all the elements developed we proceed to perform the necessary tests in order to evaluate the distributed mobility management as a solution. This document explains the full design, execution and validationprocesses. Finally all the measurements and statistical data are detailed in order to have an approximation of the services that could achieve the developed network.Ingeniería Telemátic

    Software-Driven and Virtualized Architectures for Scalable 5G Networks

    Full text link
    In this dissertation, we argue that it is essential to rearchitect 4G cellular core networks–sitting between the Internet and the radio access network–to meet the scalability, performance, and flexibility requirements of 5G networks. Today, there is a growing consensus among operators and research community that software-defined networking (SDN), network function virtualization (NFV), and mobile edge computing (MEC) paradigms will be the key ingredients of the next-generation cellular networks. Motivated by these trends, we design and optimize three core network architectures, SoftMoW, SoftBox, and SkyCore, for different network scales, objectives, and conditions. SoftMoW provides global control over nationwide core networks with the ultimate goal of enabling new routing and mobility optimizations. SoftBox attempts to enhance policy enforcement in statewide core networks to enable low-latency, signaling-efficient, and customized services for mobile devices. Sky- Core is aimed at realizing a compact core network for citywide UAV-based radio networks that are going to serve first responders in the future. Network slicing techniques make it possible to deploy these solutions on the same infrastructure in parallel. To better support mobility and provide verifiable security, these architectures can use an addressing scheme that separates network locations and identities with self-certifying, flat and non-aggregatable address components. To benefit the proposed architectures, we designed a high-speed and memory-efficient router, called Caesar, for this type of addressing schemePHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146130/1/moradi_1.pd

    SD-MCAN: A Software-Defined Solution for IP Mobility in Campus Area Networks

    Get PDF
    Campus Area Networks (CANs) are a subset of enterprise networks, comprised of a network core connecting multiple Local Area Networks (LANs) across a college campus. Traditionally, hosts connect to the CAN via a single point of attachment; however, the past decade has seen the employment of mobile computing rise dramatically. Mobile devices must obtain new Internet Protocol (IP) addresses at each LAN as they migrate, wasting address space and disrupting host services. To prevent these issues, modern CANs should support IP mobility: allowing devices to keep a single IP address as they migrate between LANs with low-latency handoffs. Traditional approaches to mobility may be difficult to deploy and often lead to inefficient routing, but Software-Defined Networking (SDN) provides an intriguing alternative. This thesis identifies necessary requirements for a software-defined IP mobility system and then proposes one such system, the Software-Defined Mobile Campus Area Network (SD-MCAN) architecture. SD-MCAN employs an OpenFlow-based hybrid, label-switched routing scheme to efficiently route traffic flows between mobile hosts on the CAN. The proposed architecture is then implemented as an application on the existing POX controller and evaluated on virtual and hardware testbeds. Experimental results show that SD-MCAN can process handoffs with less than 90 ms latency, suggesting that the system can support data-intensive services on mobile host devices. Finally, the POX prototype is open-sourced to aid in future research
    • …
    corecore