453,708 research outputs found

    An Adaptive Virtual Training System Based on Universal Design

    Get PDF
    The increasing complexity of manufacturing environments requires effective training systems to prepare the operation personnel for their tasks. Several training systems have been proposed. A common approach is the application of virtual environments to train interactions with an industrial machine in a safe, attractive, and efficient way. However, these training systems cannot adapt to the requirements of an increasingly diversified workforce. This paper introduces an approach for the design of an adaptive virtual training system based on the idea of universal design. The system is based on a two-step approach that consists of an initial adaptation to the user capabilities and real-time adaptations during training based on measurements of the user. The adaptations concern the use of different representations of lessons with different complexity and interaction modalities. The proposed approach provides a flexible training system that can adapt to the needs of a broad group of users

    Towards Digital Twin-enabled DevOps for CPS providing Architecture-Based Service Adaptation & Verification at Runtime

    Full text link
    Industrial Product-Service Systems (IPSS) denote a service-oriented (SO) way of providing access to CPS capabilities. The design of such systems bears high risk due to uncertainty in requirements related to service function and behavior, operation environments, and evolving customer needs. Such risks and uncertainties are well known in the IT sector, where DevOps principles ensure continuous system improvement through reliable and frequent delivery processes. A modular and SO system architecture complements these processes to facilitate IT system adaptation and evolution. This work proposes a method to use and extend the Digital Twins (DTs) of IPSS assets for enabling the continuous optimization of CPS service delivery and the latter's adaptation to changing needs and environments. This reduces uncertainty during design and operations by assuring IPSS integrity and availability, especially for design and service adaptations at CPS runtime. The method builds on transferring IT DevOps principles to DT-enabled CPS IPSS. The chosen design approach integrates, reuses, and aligns the DT processing and communication resources with DevOps requirements derived from literature. We use these requirements to propose a DT-enabled self-adaptive CPS model, which guides the realization of DT-enabled DevOps in CPS IPSS. We further propose detailed design models for operation-critical DTs that integrate CPS closed-loop control and architecture-based CPS adaptation. This integrated approach enables the implementation of A/B testing as a use case and central concept to enable CPS IPSS service adaptation and reconfiguration. The self-adaptive CPS model and DT design concept have been validated in an evaluation environment for operation-critical CPS IPSS. The demonstrator achieved sub-millisecond cycle times during service A/B testing at runtime without causing CPS operation interferences and downtime.Comment: Final published version appearing in 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2022

    Modeling and Analyzing Adaptive User-Centric Systems in Real-Time Maude

    Full text link
    Pervasive user-centric applications are systems which are meant to sense the presence, mood, and intentions of users in order to optimize user comfort and performance. Building such applications requires not only state-of-the art techniques from artificial intelligence but also sound software engineering methods for facilitating modular design, runtime adaptation and verification of critical system requirements. In this paper we focus on high-level design and analysis, and use the algebraic rewriting language Real-Time Maude for specifying applications in a real-time setting. We propose a generic component-based approach for modeling pervasive user-centric systems and we show how to analyze and prove crucial properties of the system architecture through model checking and simulation. For proving time-dependent properties we use Metric Temporal Logic (MTL) and present analysis algorithms for model checking two subclasses of MTL formulas: time-bounded response and time-bounded safety MTL formulas. The underlying idea is to extend the Real-Time Maude model with suitable clocks, to transform the MTL formulas into LTL formulas over the extended specification, and then to use the LTL model checker of Maude. It is shown that these analyses are sound and complete for maximal time sampling. The approach is illustrated by a simple adaptive advertising scenario in which an adaptive advertisement display can react to actions of the users in front of the display.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Dynamic QoS optimization architecture for cloud-based DDDAS

    Get PDF
    Cloud computing urges the need for novel on-demand approaches, where the Quality of Service (QoS) requirements of cloud-based services can dynamically and adaptively evolve at runtime as Service Level Agreement (SLA) and environment changes. Given the unpredictable, dynamic and on-demand nature of the cloud, it would be unrealistic to assume that optimal QoS can be achieved at design time. As a result, there is an increasing need for dynamic and self- adaptive QoS optimization solutions to respond to dynamic changes in SLA and the environment. In this context, we posit that the challenge of self-adaptive QoS optimization encompasses two dynamics, which are related to QoS sensitivity and conflicting objectives at runtime. We propose novel design of a dynamic data-driven architecture for optimizing QoS influenced by those dynamics. The architecture leverages on DDDAS primitives by employing distributed simulations and symbiotic feedback loops, to dynamically adapt decision making metaheuristics, which optimizes for QoS tradeoffs in cloud-based systems. We use a scenario to exemplify and evaluate the approach

    Synthesis of Probabilistic Models for Quality-of-Service Software Engineering

    Get PDF
    An increasingly used method for the engineering of software systems with strict quality-of-service (QoS) requirements involves the synthesis and verification of probabilistic models for many alternative architectures and instantiations of system parameters. Using manual trial-and-error or simple heuristics for this task often produces suboptimal models, while the exhaustive synthesis of all possible models is typically intractable. The EvoChecker search-based software engineering approach presented in our paper addresses these limitations by employing evolutionary algorithms to automate the model synthesis process and to significantly improve its outcome. EvoChecker can be used to synthesise the Pareto-optimal set of probabilistic models associated with the QoS requirements of a system under design, and to support the selection of a suitable system architecture and configuration. EvoChecker can also be used at runtime, to drive the efficient reconfiguration of a self-adaptive software system. We evaluate EvoChecker on several variants of three systems from different application domains, and show its effectiveness and applicability

    Adaptive Service Composition Based on Runtime Verification of Formal Properties

    Get PDF
    Service-Oriented Computing (SOC) has been used in business environments in order to integrate heterogeneous systems. The dynamic nature of these environments causes \ changes in the application requirements. As a result, service composition must be flexible, dynamic and adaptive, which motivate the need to ensure the service composition behavior \ at runtime. The development of adaptive service compositions is still an opportunity due to the complexity of dealing with adaptation issues, for example, how to provide runtime verification \ and automatic adaptation. Formal description techniques can be used to detect runtime undesirable behaviors that help in adaptation process. However, formal techniques have been \ used only at design-time. In this paper, we propose an adaptive service composition approach based on the lightweight use of formal methods. The aim is detecting undesirable behaviors in \ the execution trace. Once an undesirable behavior is detected during the execution of a service composition, our approach triggers an adequate reconfiguration plan for the problem at \ runtime. In order to evaluate the effectiveness of the proposal, we illustrate it with a running example

    Runtime models based on dynamic decision networks:enhancing the decision-making in the domain of ambient assisted living applications

    Get PDF
    Dynamic decision-making for self-Adaptive systems (SAS) requires the runtime trade-off of multiple non-functional requirements (NFRs) -Aka quality properties-And the costsbenefits analysis of the alternative solutions. Usually, it requires the specification of utility preferences for NFRs and decisionmaking strategies. Traditionally, these preferences have been defined at design-Time. In this paper we develop further our ideas on re-Assessment of NFRs preferences given new evidence found at runtime and using dynamic decision networks (DDNs) as the runtime abstractions. Our approach use conditional probabilities provided by DDNs, the concepts of Bayesian surprise and Primitive Cognitive Network Process (P-CNP), for the determination of the initial preferences. Specifically, we present a case study in the domain problem of ambient assisted living (AAL). Based on the collection of runtime evidence, our approach allows the identification of unknown situations at the design stage

    A hybrid approach combining control theory and AI for engineering self-adaptive systems

    Get PDF
    Control theoretical techniques have been successfully adopted as methods for self-adaptive systems design to provide formal guarantees about the effectiveness and robustness of adaptation mechanisms. However, the computational effort to obtain guarantees poses severe constraints when it comes to dynamic adaptation. In order to solve these limitations, in this paper, we propose a hybrid approach combining software engineering, control theory, and AI to design for software self-adaptation. Our solution proposes a hierarchical and dynamic system manager with performance tuning. Due to the gap between high-level requirements specification and the internal knob behavior of the managed system, a hierarchically composed components architecture seek the separation of concerns towards a dynamic solution. Therefore, a two-layered adaptive manager was designed to satisfy the software requirements with parameters optimization through regression analysis and evolutionary meta-heuristic. The optimization relies on the collection and processing of performance, effectiveness, and robustness metrics w.r.t control theoretical metrics at the offline and online stages. We evaluate our work with a prototype of the Body Sensor Network (BSN) in the healthcare domain, which is largely used as a demonstrator by the community. The BSN was implemented under the Robot Operating System (ROS) architecture, and concerns about the system dependability are taken as adaptation goals. Our results reinforce the necessity of performing well on such a safety-critical domain and contribute with substantial evidence on how hybrid approaches that combine control and AI-based techniques for engineering self-adaptive systems can provide effective adaptation
    corecore