8,180 research outputs found

    Estimation of alternative splicing isoform frequencies from RNA-Seq data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massively parallel whole transcriptome sequencing, commonly referred as RNA-Seq, is quickly becoming the technology of choice for gene expression profiling. However, due to the short read length delivered by current sequencing technologies, estimation of expression levels for alternative splicing gene isoforms remains challenging.</p> <p>Results</p> <p>In this paper we present a novel expectation-maximization algorithm for inference of isoform- and gene-specific expression levels from RNA-Seq data. Our algorithm, referred to as IsoEM, is based on disambiguating information provided by the distribution of insert sizes generated during sequencing library preparation, and takes advantage of base quality scores, strand and read pairing information when available. The open source Java implementation of IsoEM is freely available at <url>http://dna.engr.uconn.edu/software/IsoEM/</url>.</p> <p>Conclusions</p> <p>Empirical experiments on both synthetic and real RNA-Seq datasets show that IsoEM has scalable running time and outperforms existing methods of isoform and gene expression level estimation. Simulation experiments confirm previous findings that, for a fixed sequencing cost, using reads longer than 25-36 bases does not necessarily lead to better accuracy for estimating expression levels of annotated isoforms and genes.</p

    Using GWAS Data to Identify Copy Number Variants Contributing to Common Complex Diseases

    Full text link
    Copy number variants (CNVs) account for more polymorphic base pairs in the human genome than do single nucleotide polymorphisms (SNPs). CNVs encompass genes as well as noncoding DNA, making these polymorphisms good candidates for functional variation. Consequently, most modern genome-wide association studies test CNVs along with SNPs, after inferring copy number status from the data generated by high-throughput genotyping platforms. Here we give an overview of CNV genomics in humans, highlighting patterns that inform methods for identifying CNVs. We describe how genotyping signals are used to identify CNVs and provide an overview of existing statistical models and methods used to infer location and carrier status from such data, especially the most commonly used methods exploring hybridization intensity. We compare the power of such methods with the alternative method of using tag SNPs to identify CNV carriers. As such methods are only powerful when applied to common CNVs, we describe two alternative approaches that can be informative for identifying rare CNVs contributing to disease risk. We focus particularly on methods identifying de novo CNVs and show that such methods can be more powerful than case-control designs. Finally we present some recommendations for identifying CNVs contributing to common complex disorders.Comment: Published in at http://dx.doi.org/10.1214/09-STS304 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Discovery of large genomic inversions using long range information.

    Get PDF
    BackgroundAlthough many algorithms are now available that aim to characterize different classes of structural variation, discovery of balanced rearrangements such as inversions remains an open problem. This is mainly due to the fact that breakpoints of such events typically lie within segmental duplications or common repeats, which reduces the mappability of short reads. The algorithms developed within the 1000 Genomes Project to identify inversions are limited to relatively short inversions, and there are currently no available algorithms to discover large inversions using high throughput sequencing technologies.ResultsHere we propose a novel algorithm, VALOR, to discover large inversions using new sequencing methods that provide long range information such as 10X Genomics linked-read sequencing, pooled clone sequencing, or other similar technologies that we commonly refer to as long range sequencing. We demonstrate the utility of VALOR using both pooled clone sequencing and 10X Genomics linked-read sequencing generated from the genome of an individual from the HapMap project (NA12878). We also provide a comprehensive comparison of VALOR against several state-of-the-art structural variation discovery algorithms that use whole genome shotgun sequencing data.ConclusionsIn this paper, we show that VALOR is able to accurately discover all previously identified and experimentally validated large inversions in the same genome with a low false discovery rate. Using VALOR, we also predicted a novel inversion, which we validated using fluorescent in situ hybridization. VALOR is available at https://github.com/BilkentCompGen/VALOR
    • …
    corecore