22,794 research outputs found

    Cell replication and redundancy elimination during placement for cycle time optimization

    Get PDF
    This paper presents a new timing driven approach for cell replication tailored to the practical needs of standard cell layout design. Cell replication methods have been studied extensively in the context of generic partitioning problems. However, until now it has remained unclear what practical benefit can be obtained from this concept in a realistic environment for timing driven layout synthesis. Therefore, this paper presents a timing driven cell replication procedure, demonstrates its incorporation into a standard cell placement and routing tool and examines its benefit on the final circuit performance in comparison with conventional gate or transistor sizing techniques. Furthermore, we demonstrate that cell replication can deteriorate the stuck-at fault testability of circuits and show that stuck-at redundancy elimination must be integrated into the placement procedure. Experimental results demonstrate the usefulness of the proposed methodology and suggest that cell replication should be an integral part of the physical design flow complementing traditional gate sizing techniques

    On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark

    Full text link
    Querying very large RDF data sets in an efficient manner requires a sophisticated distribution strategy. Several innovative solutions have recently been proposed for optimizing data distribution with predefined query workloads. This paper presents an in-depth analysis and experimental comparison of five representative and complementary distribution approaches. For achieving fair experimental results, we are using Apache Spark as a common parallel computing framework by rewriting the concerned algorithms using the Spark API. Spark provides guarantees in terms of fault tolerance, high availability and scalability which are essential in such systems. Our different implementations aim to highlight the fundamental implementation-independent characteristics of each approach in terms of data preparation, load balancing, data replication and to some extent to query answering cost and performance. The presented measures are obtained by testing each system on one synthetic and one real-world data set over query workloads with differing characteristics and different partitioning constraints.Comment: 16 pages, 3 figure

    TAPER: query-aware, partition-enhancement for large, heterogenous, graphs

    Full text link
    Graph partitioning has long been seen as a viable approach to address Graph DBMS scalability. A partitioning, however, may introduce extra query processing latency unless it is sensitive to a specific query workload, and optimised to minimise inter-partition traversals for that workload. Additionally, it should also be possible to incrementally adjust the partitioning in reaction to changes in the graph topology, the query workload, or both. Because of their complexity, current partitioning algorithms fall short of one or both of these requirements, as they are designed for offline use and as one-off operations. The TAPER system aims to address both requirements, whilst leveraging existing partitioning algorithms. TAPER takes any given initial partitioning as a starting point, and iteratively adjusts it by swapping chosen vertices across partitions, heuristically reducing the probability of inter-partition traversals for a given pattern matching queries workload. Iterations are inexpensive thanks to time and space optimisations in the underlying support data structures. We evaluate TAPER on two different large test graphs and over realistic query workloads. Our results indicate that, given a hash-based partitioning, TAPER reduces the number of inter-partition traversals by around 80%; given an unweighted METIS partitioning, by around 30%. These reductions are achieved within 8 iterations and with the additional advantage of being workload-aware and usable online.Comment: 12 pages, 11 figures, unpublishe

    Loom: Query-aware Partitioning of Online Graphs

    Full text link
    As with general graph processing systems, partitioning data over a cluster of machines improves the scalability of graph database management systems. However, these systems will incur additional network cost during the execution of a query workload, due to inter-partition traversals. Workload-agnostic partitioning algorithms typically minimise the likelihood of any edge crossing partition boundaries. However, these partitioners are sub-optimal with respect to many workloads, especially queries, which may require more frequent traversal of specific subsets of inter-partition edges. Furthermore, they largely unsuited to operating incrementally on dynamic, growing graphs. We present a new graph partitioning algorithm, Loom, that operates on a stream of graph updates and continuously allocates the new vertices and edges to partitions, taking into account a query workload of graph pattern expressions along with their relative frequencies. First we capture the most common patterns of edge traversals which occur when executing queries. We then compare sub-graphs, which present themselves incrementally in the graph update stream, against these common patterns. Finally we attempt to allocate each match to single partitions, reducing the number of inter-partition edges within frequently traversed sub-graphs and improving average query performance. Loom is extensively evaluated over several large test graphs with realistic query workloads and various orderings of the graph updates. We demonstrate that, given a workload, our prototype produces partitionings of significantly better quality than existing streaming graph partitioning algorithms Fennel and LDG
    • …
    corecore