778 research outputs found

    Design of module level converters in photovoltaic power systems

    Get PDF
    The application of distributed maximum power point tracking (DMPPT) technology in solar photovoltaic (PV) systems is a hot topic in industry and academia. In the PV industry, grid integrated power systems are mainstream. The main objective for PV system design is to increase energy conversion efficiency and decrease the levelized cost of electricity of PV generators. This thesis firstly presents an extensive review of state-of-the-art PV technologies. With focus on grid integrated PV systems research, various aspects covered include PV materials, conventional full power processing DMPPT architectures, main MPPT techniques, and traditional partial power processing DMPPT architectures. The main restrictions to applying traditional DMPPT architectures in large power systems are discussed. A parallel connected partial power processing DMPPT architecture is proposed aiming to overcome existing restrictions. With flexible ‘plug-and-play’ functionality, the proposed architecture can be readily expanded to supply a downstream inverter stage or dc network. By adopting smaller module integrated converters, the proposed approach provides a possible efficiency improvement and cost reduction. The requirements for possible converter candidates and control strategies are analysed. One representative circuit scheme is presented as an example to verify the feasibility of the design. An electromagnetic transient model is built for different power scale PV systems to verify the DMPPT feasibility of the evaluated architecture in a large-scale PV power system. Voltage boosting ability is widely needed for converters in DMPPT applications. Impedance source converters (ISCs) are the main converter types with step-up ability. However, these converters have a general problem of low order distortion when applied in dc-ac applications. To solve this problem, a generic plug-in repetitive control strategy for a four-switch three-phase ISC type inverter configuration is developed. Simulation and experimental results confirm that this control strategy is suitable for many ISC converters.The application of distributed maximum power point tracking (DMPPT) technology in solar photovoltaic (PV) systems is a hot topic in industry and academia. In the PV industry, grid integrated power systems are mainstream. The main objective for PV system design is to increase energy conversion efficiency and decrease the levelized cost of electricity of PV generators. This thesis firstly presents an extensive review of state-of-the-art PV technologies. With focus on grid integrated PV systems research, various aspects covered include PV materials, conventional full power processing DMPPT architectures, main MPPT techniques, and traditional partial power processing DMPPT architectures. The main restrictions to applying traditional DMPPT architectures in large power systems are discussed. A parallel connected partial power processing DMPPT architecture is proposed aiming to overcome existing restrictions. With flexible ‘plug-and-play’ functionality, the proposed architecture can be readily expanded to supply a downstream inverter stage or dc network. By adopting smaller module integrated converters, the proposed approach provides a possible efficiency improvement and cost reduction. The requirements for possible converter candidates and control strategies are analysed. One representative circuit scheme is presented as an example to verify the feasibility of the design. An electromagnetic transient model is built for different power scale PV systems to verify the DMPPT feasibility of the evaluated architecture in a large-scale PV power system. Voltage boosting ability is widely needed for converters in DMPPT applications. Impedance source converters (ISCs) are the main converter types with step-up ability. However, these converters have a general problem of low order distortion when applied in dc-ac applications. To solve this problem, a generic plug-in repetitive control strategy for a four-switch three-phase ISC type inverter configuration is developed. Simulation and experimental results confirm that this control strategy is suitable for many ISC converters

    A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Power quality (PQ) has become an important topic in today’s power system scenario. PQ issues are raised not only in normal three-phase systems but also with the incorporation of different distributed generations (DGs), including renewable energy sources, storage systems, and other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the non-linear features and rapid changing of power electronics devices, such as switch-mode converters for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching devices in the utility system leads to an increase in disturbances associated with harmonics and reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the utility system. Therefore, many researchers are working on the enhancement of PQ using different custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid filters. Further, the authors point out several compensation strategies, including reference signal generation and gating signal strategies. In addition, this paper also presents the role of the active power filter (APF) in different DG systems. Some technical and economic considerations and future developments are also discussed in this literature. For easy reference, a volume of journals of more than 140 publications on this particular subject is reported. The effectiveness of this research work will boost researchers’ ability to select proper control methodology and compensation strategy for various applications of APFs for improving PQ.publishedVersio

    High performance control of a single-phase shunt active filter

    Get PDF
    Shunt active power filters are devices connected in parallel with nonlinear and reactive loads which are in charge of compensating these characteristics in order to assure the quality of the distribution network. This work analyzes the dynamics of boost-converter used as an active filter and proposes a control system which guarantees closed-loop performance (power factor close to 1 and current harmonics compensation). Proposed controller is hierarchically decomposed in two control loops, one in charge of shaping the current and the other in charge of assuring the power balance. Differently from other works both control loops are analytically tuned. The work describes both the analytical development and the experimental results showing the good performance of the closedloop system.Peer Reviewe

    Odd-Harmonic Digital Repetitive Control of a Single-Phase Current Active Filter

    Get PDF
    Shunt active power filters have been proved as useful elements to correct distorted currents caused by nonlinear loads in power distribution systems. This work presents an all-digital approach, based on the repetitive control technique, for their control. In particular, a special digital repetitive plug-in controller for odd-harmonic discrete-time periodic references and disturbances is used. This approach does not introduce high gain at those frequencies for which it is not needed, and thus it improves robustness. Additionally, the necessary data memory capacity is lower than in traditional repetitive controllers. The design is performed for the particular case of single-phase shunt active filter with a full-bridge boost topology. Several experimental results are also presented to show the good behavior of the closed-loop system.Peer Reviewe

    Load-adaptive zero-phase-shift direct repetitive control for stand-alone four-leg VSI

    Get PDF
    This paper deals with a dedicated load adaptive phase compensation algorithm to be used in Repetitive Control based stand-alone 4-leg VSI. The plant model is achieved, its inherent modifications according to the operating point are highlighted and used to properly adapt the Repetitive Control structure. Modification of the repetitive control parameters is described to obtain the desired phase compensation capabilities achieving a Zero-Phase-Shift condition at each harmonic. This allows to increase the gain of the Repetitive Controller at high order harmonics thus yielding a better VSI output voltages with strongly reduced THD and faster dynamic response. As a consequence, the VSI output voltages are almost independent from the loads to be fed and the 4-leg VSI with the proposed Zero-Phase-Shift Direct Repetitive Control is an ideal candidate to supply sensitive loads in microgrid, in particular for stand-alone applications

    Performance evaluation of a proportional integral with proportional derivative feedforward voltage control for UPSs

    Get PDF
    This paper presents a performance evaluation of a proportional-integral (PI) with proportional-derivative (PD) feedforward control for the output voltage of a single-phase off-line uninterruptible power supply (UPS) without using additional sensors. The control system is explained and simulation results are presented to analyze the steady state and transient response of the implemented voltage control. A laboratorial prototype was developed, and acquired experimental results considering linear and nonlinear loads are presented and discussed, corroborating the obtained simulation results.SFRH/BD/134353/2017info:eu-repo/semantics/publishedVersio

    Universal fractional-order design of linear phase lead compensation multirate repetitive control for PWM inverters

    Get PDF
    Repetitive control (RC) with linear phase lead compensation provides a simple but very effective control solution for any periodic signal with a known period. Multirate repetitive control (MRC) with a downsampling rate can reduce the need of memory size and computational cost, and then leads to a more feasible design of the plug-in repetitive control systems in practical applications. However, with fixed sampling rate, both MRC and its linear phase lead compensator are sensitive to the ratio of the sampling frequency to the frequency of interested periodic signals: (1) MRC might fails to exactly compensate the periodic signal in the case of a fractional ratio; (2) linear phase lead compensation might fail to enable MRC to achieve satisfactory performance in the case of a low ratio. In this paper, a universal fractional-order design of linear phase lead compensation MRC is proposed to tackle periodic signals with high accuracy, fast dynamic response, good robustness, and cost-effective implementation regardless of the frequency ratio, which offers a unified framework for housing various RC schemes in extensive engineering application. An application example of programmable AC power supply is explored to comprehensively testify the effectiveness of the proposed control scheme

    Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques

    Get PDF
    To rely on joint active disturbance rejection control (ADRC) and repetitive control (RC), in this paper, a compound control law for active power filter (APF) current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result
    • …
    corecore