38 research outputs found

    Development of automated intravenous blood infusion monitoring system using load cell sensor

    Get PDF
    This paper presents an automated intravenous blood infusion unit to prevent a reflux using a load cell sensor. Intravenous infusion is frequently used in the hospital for patients’ management and treatments such as dehydration and surgical operations. The sensor measures initial weight (500mls) of initial content of intravenous bag and set a threshold of 20mls or less, and then sends a signal through transmitter to receiver as an alarm indicating current state of the intravenous infusion. This is to support monitoring system by biomedical professionals and avoid blood reflux. The sensor has a strain gauge transducer that converts force into an electric signal in millivolts; two-18 pin microcontroller was deplored to modulate signals from the transmitter to the receiver, a buzzer indicator for sound notification, and LCD display monitor screen node station.Keywords: Intravenous infusion, hospital information system, reflux, intravenous therap

    PENENTUAN CAIRAN INFUS MASUK KE PASIEN SECARA OTOMATIS LEWAT PARAMETER BERAT MENGGUNAKAN JARINGAN NIRKABEL

    Get PDF
    Infus intravena dengan metoda gravity drip IV delivery adalah salah satu perawatan yang paling umum diberikan kepada pasien, khusus yang sedang menjalani operasi, dalam keadaan koma, kasus demam berdarah dan lainnya. Pemantauan berkelanjutan pada pasien merupakan faktor utama untuk penentu kualitas hasil perawatan. Parameter pemantauan adalah banyaknya cairan infus yang sudah masuk ke tubuh pasien, dan banyaknya cairan yang tersisa pada sistem infus.  Informasi ini sangat dibutuhkan perawat untuk memberikan perawatan. Makalah membahas tentang inovasi untuk memonitor banyaknya cairan infus yang telah masuk ke tubuh pasien, dengan memonitor sisa berat cairan pada sistem infus. Volume cairan infus yang masuk ke tubuh pasien berbanding lurus dengan nilai berat hasil kalkulasi. Nilai berat tersebut adalah selisih berat awal cairan infus terhadap berat cairan yang masih tersisa dalam sistem infus. Perangkat ini menimbang cairan infus beserta kemasannya selama proses terapi, dan memonitor berkurangnya berat karena cairan telah masuk ke dalam tubuh pasien. Perangkat terdiri dari sebuah loadcell beserta strain-gauge, analog-to-digital converter HX711, single board computer Raspberry PI model 3B+, layar sentuh, dan jaringan nirkabel untuk menghubungkan dengan sistem pemantauan terpusat.   Intravenous infusion with IV drip delivery method is one of the most common treatments given to the patients, especially those whose undergo surgery, in a coma, cases of dengue fever and others. Continuous monitoring of patients is a significant factor determining the quality of care outcomes. The monitoring parameter is the amount of infusion fluid that has entered the patient's body, and the amount of fluid left in the infusion system. This information is vital to the nurses for providing care. The paper discusses the innovation to monitor the amount of infusion fluid that has entered the patient’s body by monitoring the weight of fluid remaining in the infusion system. The volume of infusion fluid that enters the patient's body is directly proportional to the weight value of the calculation results. The weight value is the difference between the initial weight of the infusion fluid and the amount of fluid remaining in the infusion system This device measures the reduction of intravenous fluids weights due to fluids that entering the patient's body. The device consists of a load cell along with strain-gauges, an analog-to-digital converter HX711, a single board Raspberry PI 3B + model, a touch screen and wireless network to connect with a centralized monitoring system

    PENENTUAN CAIRAN INFUS MASUK KE PASIEN SECARA OTOMATIS LEWAT PARAMETER BERAT MENGGUNAKAN JARINGAN NIRKABEL

    Get PDF
    Infus intravena dengan metoda gravity drip IV delivery adalah salah satu perawatan yang paling umum diberikan kepada pasien, khusus yang sedang menjalani operasi, dalam keadaan koma, kasus demam berdarah dan lainnya. Pemantauan berkelanjutan pada pasien merupakan faktor utama untuk penentu kualitas hasil perawatan. Parameter pemantauan adalah banyaknya cairan infus yang sudah masuk ke tubuh pasien, dan banyaknya cairan yang tersisa pada sistem infus.  Informasi ini sangat dibutuhkan perawat untuk memberikan perawatan. Makalah membahas tentang inovasi untuk memonitor banyaknya cairan infus yang telah masuk ke tubuh pasien, dengan memonitor sisa berat cairan pada sistem infus. Volume cairan infus yang masuk ke tubuh pasien berbanding lurus dengan nilai berat hasil kalkulasi. Nilai berat tersebut adalah selisih berat awal cairan infus terhadap berat cairan yang masih tersisa dalam sistem infus. Perangkat ini menimbang cairan infus beserta kemasannya selama proses terapi, dan memonitor berkurangnya berat karena cairan telah masuk ke dalam tubuh pasien. Perangkat terdiri dari sebuah loadcell beserta strain-gauge, analog-to-digital converter HX711, single board computer Raspberry PI model 3B+, layar sentuh, dan jaringan nirkabel untuk menghubungkan dengan sistem pemantauan terpusat.   Intravenous infusion with IV drip delivery method is one of the most common treatments given to the patients, especially those whose undergo surgery, in a coma, cases of dengue fever and others. Continuous monitoring of patients is a significant factor determining the quality of care outcomes. The monitoring parameter is the amount of infusion fluid that has entered the patient's body, and the amount of fluid left in the infusion system. This information is vital to the nurses for providing care. The paper discusses the innovation to monitor the amount of infusion fluid that has entered the patient’s body by monitoring the weight of fluid remaining in the infusion system. The volume of infusion fluid that enters the patient's body is directly proportional to the weight value of the calculation results. The weight value is the difference between the initial weight of the infusion fluid and the amount of fluid remaining in the infusion system This device measures the reduction of intravenous fluids weights due to fluids that entering the patient's body. The device consists of a load cell along with strain-gauges, an analog-to-digital converter HX711, a single board Raspberry PI 3B + model, a touch screen and wireless network to connect with a centralized monitoring system

    Informative Vibrotactile Displays to Support Attention and Task Management in Anesthesiology.

    Full text link
    The task set of an anesthesiologist, like that of operators in many complex, data-rich domains, requires effective management of attention, which must be divided among multiple tasks and task-relevant data sources. The inefficient allocation of attentional resources can lead to errors in monitoring a patient’s physiology, which constitute a significant portion of preventable medical errors. To better support attention management and multitasking performance without additionally loading the visual or auditory channels, this dissertation describes work to develop novel “continuously-informing” vibrotactile displays of physiological data. These displays use coded vibration patterns to communicate blood pressure and respiration data in real time. A theory-based approach was taken in the design of these displays to support the properties of “preattentive reference”: the signals can be processed in parallel without interfering with ongoing tasks, include partial information to support efficient task-switching, and can be processed in a mentally economical way. A series of research activities identified: 1) types of information that could best support anesthesiologists in task management decisions; 2) how to display this information via vibrotactile signals in ways that minimize perceptual interference from effects such as vibrotactile adaptation, masking, and tactile “change blindness”; 3) how to encode the information in vibrotactile patterns to minimize interference with concurrent tasks at cognitive processing stages; and 4) mappings between signal modulations and the represented data that best support economical processing. An evaluation study, set in a high-fidelity clinical simulation, showed substantial improvements in anesthesiologists’ multitasking performance, including faster detection and correction of serious health events, and fewer unnecessary interruptions of ongoing tasks with continuously-informing tactile displays, when compared to performance with traditional (visual/auditory) display configurations. This work contributes to theories and models of tactile and multimodal information processing, specifically concerning the performance effects of perceptual and cognitive interferences when information is processed via two or more sensory channels concurrently. It also demonstrates how a vibrotactile display designed to support properties of preattentive reference can improve attention management and multitask performance, thus showing promise for reducing the prevalence of monitoring errors and system awareness issues in anesthesiology and other complex, data rich domains.Ph.D.Industrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78911/1/ferrist_1.pd

    An investigation of healthcare professionals’ experiences of training and using electronic prescribing systems: four literature reviews and two qualitative studies undertaken in the UK hospital context

    Get PDF
    Electronic prescribing (ePrescribing) is the process of ordering medicines electronically for a patient and has been associated with reduced medication errors and improved patient safety. However, these systems have also been associated with unintended adverse consequences. There is a lack of published research about users’ experiences of these systems in UK hospitals. The aim of this research was therefore to firstly describe the literature pertaining to the recent developments and persisting issues with ePrescribing and clinical decision support systems (CDS) (chapter 2). Two further systematic literature reviews (chapters 3 and 4) were then conducted to understand the unintended consequences of ePrescribing and clinical decision support (CDS) systems across both adult and paediatric patients. These revealed a taxonomy of factors, which have contributed to errors during use of these systems e.g., the screen layout, default settings and inappropriate drug-dosage support. The researcher then conducted a qualitative study (chapters 7-10) to explore users’ experiences of using and being trained to use ePrescribing systems. This study involved conducting semi-structured interviews and observations, which revealed key challenges facing users, including issues with using the ‘Medication List’ and how information was presented. Users experienced benefits and challenges when customising the system, including the screen display; however, the process was sometimes overly complex. Users also described the benefits and challenges associated with different forms of interruptive and passive CDS. Order sets, for instance, encouraged more efficient prescribing, yet users often found them difficult to find within the system. A lack of training resulted in users failing to use all features of the ePrescribing system and left some healthcare staff feeling underprepared for using the system in their role. A further literature review (chapter 5) was then performed to complement emerging themes relating to how users were trained to use ePrescribing systems, which were generated as part of a qualitative study. This review revealed the range of approaches used to train users and the need for further research in this area. The literature review and qualitative study-based findings led to a follow-on study (chapter 10), whereby the researcher conducted semi-structured interviews to examine how users were trained to use ePrescribing systems across four NHS Hospital Trusts. A range of approaches were used to train users; tailored training, using clinically specific scenarios or matching the user’s profession to that of the trainer were preferred over lectures and e-learning may offer an efficient way of training large numbers of staff. However, further research is needed to investigate this and whether alternative approaches such as the use of students as trainers could be useful. This programme of work revealed the importance of human factors and user involvement in the design and ongoing development of ePrescribing systems. Training also played a role in users’ experiences of using the system and hospitals should carefully consider the training approaches used. This thesis provides recommendations gathered from the literature and primary data collection that can help inform organisations, system developers and further research in this area

    Antennas and Electromagnetics Research via Natural Language Processing.

    Get PDF
    Advanced techniques for performing natural language processing (NLP) are being utilised to devise a pioneering methodology for collecting and analysing data derived from scientific literature. Despite significant advancements in automated database generation and analysis within the domains of material chemistry and physics, the implementation of NLP techniques in the realms of metamaterial discovery, antenna design, and wireless communications remains at its early stages. This thesis proposes several novel approaches to advance research in material science. Firstly, an NLP method has been developed to automatically extract keywords from large-scale unstructured texts in the area of metamaterial research. This enables the uncovering of trends and relationships between keywords, facilitating the establishment of future research directions. Additionally, a trained neural network model based on the encoder-decoder Long Short-Term Memory (LSTM) architecture has been developed to predict future research directions and provide insights into the influence of metamaterials research. This model lays the groundwork for developing a research roadmap of metamaterials. Furthermore, a novel weighting system has been designed to evaluate article attributes in antenna and propagation research, enabling more accurate assessments of impact of each scientific publication. This approach goes beyond conventional numeric metrics to produce more meaningful predictions. Secondly, a framework has been proposed to leverage text summarisation, one of the primary NLP tasks, to enhance the quality of scientific reviews. It has been applied to review recent development of antennas and propagation for body-centric wireless communications, and the validation has been made available for comparison with well-referenced datasets for text summarisation. Lastly, the effectiveness of automated database building in the domain of tunable materials and their properties has been presented. The collected database will use as an input for training a surrogate machine learning model in an iterative active learning cycle. This model will be utilised to facilitate high-throughput material processing, with the ultimate goal of discovering novel materials exhibiting high tunability. The approaches proposed in this thesis will help to accelerate the discovery of new materials and enhance their applications in antennas, which has the potential to transform electromagnetic material research

    A Sustainable Clinical Simulation Framework For Pre-Specialisation Clinical Technology Training In South Africa

    Get PDF
    ThesisIntroduction: As part of the healthcare fraternity, clinical technology has been lacking in using clinical simulation as part of the training of clinical technology students. However, as healthcare professionals, clinical technology students often face similar problems as other healthcare students when dealing with real patients for the first time or entering the healthcare environment. Simulation has proved its worth to prepare and train various healthcare students in the necessary technical and non-technical skills in a safe and controlled environment. Therefore, the purpose of this study was to investigate the development of a sustainable clinical simulation framework for pre-specialisation clinical technology students in South Africa. Methods: An in-depth study based on the grounded theory approach was done using three known qualitative methods: a detailed literature review and data collected from focus group discussions and nominal group interviews. Due to the COVID-19 pandemic outbreak, both the focus groups discussions and nominal group interviews were conducted via an online meeting platform. Two focus groups discussions were conducted with work-integrated learning (WIL) supervisors responsible for the supervision and training of clinical technology students busy with WIL. Three online nominal group interviews were held with the personnel of tertiary institutions in South Africa responsible for offering the clinical technology qualification. The tertiary institutions included Central University of Technology (CUT), Durban University of Technology (DUT) and Tshwane University of Technology (TUT). Data and transcripts from the focus group discussions were analysed through a triple coding process, whereas nominal group interviews’ data were analysed via known qualitative techniques. Results: Two focus groups were conducted with various themes identified from the four focus group areas. The central theme from focus group area one was “The importance of clinical simulation”. Focus group area two, “The preparation of the pre-specialisation clinical technology students.”, identified five major themes. Focus group area 3 viewed the role simulation may play in the training and assessment of clinical technology students. One major theme surfaced from this focus group area, namely “The expectations of a clinical simulation programme”. Focus group area 4, “Important issues regarding practical and skills training”, resulted in four major themes. In addition to the two focus group discussions, three nominal groups meetings were conducted with fifteen themes identified regarding the role simulation may play in the training and assessment of pre-specialisation clinical technology students. Ten themes related to the important graduate attributes the nominal group participants ranked essential, clinical technology students should be trained in, were identified from the collected data. Conclusion: The researcher was able to construct a clinical simulation framework that could be implemented into the current pre-specialisation clinical technology students’ curriculum from the results. A clinical simulation framework and program will ensure that these students are adequately prepared on both a theoretical and practical level with the ability to apply the acquired knowledge in a real-life healthcare environment. The resultant effect will be a better prepared and knowledgeable student entering the WIL environment with confidence
    corecore