34,770 research outputs found

    Integrability and tail estimates for Gaussian rough differential equations

    Full text link
    We derive explicit tail-estimates for the Jacobian of the solution flow for stochastic differential equations driven by Gaussian rough paths. In particular, we deduce that the Jacobian has finite moments of all order for a wide class of Gaussian process including fractional Brownian motion with Hurst parameter H>1/4. We remark on the relevance of such estimates to a number of significant open problems.Comment: Published in at http://dx.doi.org/10.1214/12-AOP821 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fractional Noether's theorem in the Riesz-Caputo sense

    Full text link
    We prove a Noether's theorem for fractional variational problems with Riesz-Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given.Comment: Accepted (25/Jan/2010) for publication in Applied Mathematics and Computatio

    Fractional diffusions with time-varying coefficients

    Full text link
    This paper is concerned with the fractionalized diffusion equations governing the law of the fractional Brownian motion BH(t)B_H(t). We obtain solutions of these equations which are probability laws extending that of BH(t)B_H(t). Our analysis is based on McBride fractional operators generalizing the hyper-Bessel operators LL and converting their fractional power LαL^{\alpha} into Erd\'elyi--Kober fractional integrals. We study also probabilistic properties of the r.v.'s whose distributions satisfy space-time fractional equations involving Caputo and Riesz fractional derivatives. Some results emerging from the analysis of fractional equations with time-varying coefficients have the form of distributions of time-changed r.v.'s

    Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

    Full text link
    This chapter presents some numerical methods to solve problems in the fractional calculus of variations and fractional optimal control. Although there are plenty of methods available in the literature, we concentrate mainly on approximating the fractional problem either by discretizing the fractional term or expanding the fractional derivatives as a series involving integer order derivatives. The former method, as a subclass of direct methods in the theory of calculus of variations, uses finite differences, Grunwald-Letnikov definition in this case, to discretize the fractional term. Any quadrature rule for integration, regarding the desired accuracy, is then used to discretize the whole problem including constraints. The final task in this method is to solve a static optimization problem to reach approximated values of the unknown functions on some mesh points. The latter method, however, approximates fractional problems by classical ones in which only derivatives of integer order are present. Precisely, two continuous approximations for fractional derivatives by series involving ordinary derivatives are introduced. Local upper bounds for truncation errors are provided and, through some test functions, the accuracy of the approximations are justified. Then we substitute the fractional term in the original problem with these series and transform the fractional problem to an ordinary one. Hereafter, we use indirect methods of classical theory, e.g. Euler-Lagrange equations, to solve the approximated problem. The methods are mainly developed through some concrete examples which either have obvious solutions or the solution is computed using the fractional Euler-Lagrange equation.Comment: This is a preprint of a paper whose final and definite form appeared in: Chapter V, Fractional Calculus in Analysis, Dynamics and Optimal Control (Editor: Jacky Cresson), Series: Mathematics Research Developments, Nova Science Publishers, New York, 2014. (See http://www.novapublishers.com/catalog/product_info.php?products_id=46851). Consists of 39 page

    Linearized Asymptotic Stability for Fractional Differential Equations

    Get PDF
    We prove the theorem of linearized asymptotic stability for fractional differential equations. More precisely, we show that an equilibrium of a nonlinear Caputo fractional differential equation is asymptotically stable if its linearization at the equilibrium is asymptotically stable. As a consequence we extend Lyapunov's first method to fractional differential equations by proving that if the spectrum of the linearization is contained in the sector \{\lambda \in \C : |\arg \lambda| > \frac{\alpha \pi}{2}\} where α>0\alpha > 0 denotes the order of the fractional differential equation, then the equilibrium of the nonlinear fractional differential equation is asymptotically stable
    • …
    corecore