1,109 research outputs found

    Robust Linear Regression Analysis - A Greedy Approach

    Full text link
    The task of robust linear estimation in the presence of outliers is of particular importance in signal processing, statistics and machine learning. Although the problem has been stated a few decades ago and solved using classical (considered nowadays) methods, recently it has attracted more attention in the context of sparse modeling, where several notable contributions have been made. In the present manuscript, a new approach is considered in the framework of greedy algorithms. The noise is split into two components: a) the inlier bounded noise and b) the outliers, which are explicitly modeled by employing sparsity arguments. Based on this scheme, a novel efficient algorithm (Greedy Algorithm for Robust Denoising - GARD), is derived. GARD alternates between a least square optimization criterion and an Orthogonal Matching Pursuit (OMP) selection step that identifies the outliers. The case where only outliers are present has been studied separately, where bounds on the \textit{Restricted Isometry Property} guarantee that the recovery of the signal via GARD is exact. Moreover, theoretical results concerning convergence as well as the derivation of error bounds in the case of additional bounded noise are discussed. Finally, we provide extensive simulations, which demonstrate the comparative advantages of the new technique

    Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM

    Get PDF
    The method presented in Aubry et al. (Comput Struc 83:1459–1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505–526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS

    Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations

    Full text link
    We sharpen in this work the tools of paracontrolled calculus in order to provide a complete analysis of the parabolic Anderson model equation and Burgers system with multiplicative noise, in a 33-dimensional Riemannian setting, in either bounded or unbounded domains. With that aim in mind, we introduce a pair of intertwined space-time paraproducts on parabolic H\"older spaces, with good continuity, that happens to be pivotal and provides one of the building blocks of higher order paracontrolled calculus.Comment: v3, 56 pages. Different points about renormalisation matters have been clarified. Typos correcte

    Book reports

    Get PDF

    Advances in numerical and applied mathematics

    Get PDF
    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows

    A Fully Parallelized and Budgeted Multi-level Monte Carlo Framework for Partial Differential Equations: From Mathematical Theory to Automated Large-Scale Computations

    Get PDF
    All collected data on any physical, technical or economical process is subject to uncertainty. By incorporating this uncertainty in the model and propagating it through the system, this data error can be controlled. This makes the predictions of the system more trustworthy and reliable. The multi-level Monte Carlo (MLMC) method has proven to be an effective uncertainty quantification tool, requiring little knowledge about the problem while being highly performant. In this doctoral thesis we analyse, implement, develop and apply the MLMC method to partial differential equations (PDEs) subject to high-dimensional random input data. We set up a unified framework based on the software M++ to approximate solutions to elliptic and hyperbolic PDEs with a large selection of finite element methods. We combine this setup with a new variant of the MLMC method. In particular, we propose a budgeted MLMC (BMLMC) method which is capable to optimally invest reserved computing resources in order to minimize the model error while exhausting a given computational budget. This is achieved by developing a new parallelism based on a single distributed data structure, employing ideas of the continuation MLMC method and utilizing dynamic programming techniques. The final method is theoretically motivated, analyzed, and numerically well-tested in an automated benchmarking workflow for highly challenging problems like the approximation of wave equations in randomized media

    The hunt for mixed octonion algebras

    Get PDF
    • …
    corecore