4,387 research outputs found

    Verifying Optimizations for Concurrent Programs

    Get PDF
    While program correctness for compiled languages depends fundamentally on compiler correctness, compiler optimizations are not usually formally verified due to the effort involved, particularly in the presence of concurrency. In this paper, we present a framework for stating and reasoning about compiler optimizations and transformations on programs in the presence of relaxed memory models. The core of the framework is the PTRANS specification language, in which program transformations are expressed as rewrites on control flow graphs with temporal logic side conditions. We demonstrate our technique by verifying the correctness of a redundant store elimination optimization in a simple LLVM-like intermediate language, relying on a theorem that allows us to lift single-thread simulation relations to simulations on multithreaded programs

    Data refinement for true concurrency

    Get PDF
    The majority of modern systems exhibit sophisticated concurrent behaviour, where several system components modify and observe the system state with fine-grained atomicity. Many systems (e.g., multi-core processors, real-time controllers) also exhibit truly concurrent behaviour, where multiple events can occur simultaneously. This paper presents data refinement defined in terms of an interval-based framework, which includes high-level operators that capture non-deterministic expression evaluation. By modifying the type of an interval, our theory may be specialised to cover data refinement of both discrete and continuous systems. We present an interval-based encoding of forward simulation, then prove that our forward simulation rule is sound with respect to our data refinement definition. A number of rules for decomposing forward simulation proofs over both sequential and parallel composition are developed

    Compositional reasoning for shared-variable concurrent programs

    Get PDF
    Scalable and automatic formal verification for concurrent systems is always demanding. In this paper, we propose a verification framework to support automated compositional reasoning for concurrent programs with shared variables. Our framework models concurrent programs as succinct automata and supports the verification of multiple important properties. Safety verification and simulations of succinct automata are parallel compositional, and safety properties of succinct automata are preserved under refinements. We generate succinct automata from infinite state concurrent programs in an automated manner. Furthermore, we propose the first automated approach to checking rely-guarantee based simulations between infinite state concurrent programs. We have prototyped our algorithms and applied our tool to the verification of multiple refinements

    A Concurrent Logical Relation

    Get PDF
    Abstract—We present a logical relation for showing the correctness of program transformations based on a new type-and-effect system for a concurrent extension of an ML-like language with higher-order functions, higher-order store and dynamic memory allocation. We show how to use our model to verify a number of interesting program transformations that rely on effect annotations. In particular, we prove a Parallelization Theorem, which expresses when it is sound to run two expressions in parallel instead of sequentially. The conditions are expressed solely in terms of the types and effects of the expressions. To the best of our knowledge, this is the first such result for a concurrent higher-order language with higher-order store and dynamic memory allocation. I

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Programming Language Abstractions for Modularly Verified Distributed Systems

    Get PDF
    Distributed systems are rarely developed as monolithic programs. Instead, like any software, these systems may consist of multiple program components, which are then compiled separately and linked together. Modern systems also incorporate various services interacting with each other and with client applications. However, state-of-the-art verification tools focus predominantly on verifying standalone, closed-world protocols or systems, thus failing to account for the compositional nature of distributed systems. For example, standalone verification has the drawback that when protocols and their optimized implementations evolve, one must re-verify the entire system from scratch, instead of leveraging compositionality to contain the reverification effort. In this paper, we focus on the challenge of modular verification of distributed systems with respect to high-level protocol invariants as well as for low-level implementation safety properties. We argue that the missing link between the two is a programming paradigm that would allow one to reason about both high-level distributed protocols and low-level implementation primitives in a single verification-friendly framework. Such a link would make it possible to reap the benefits from both the vast body of research in distributed computing, focused on modular protocol decomposition and consistency properties, as well as from the recent advances in program verification, enabling construction of provably correct systems implementations. To showcase the modular verification challenges, we present some typical scenarios of decomposition between a distributed protocol and its implementations. We then describe our ongoing research agenda, in which we are attempting to address the outlined problems by providing a typing discipline and a set of domain-specific primitives for specifying, implementing and verifying distributed systems. Our approach, mechanized within a proof assistant, provides the means of decomposition necessary for modular proofs about distributed protocols and systems

    Sequentializing Parameterized Programs

    Full text link
    We exhibit assertion-preserving (reachability preserving) transformations from parameterized concurrent shared-memory programs, under a k-round scheduling of processes, to sequential programs. The salient feature of the sequential program is that it tracks the local variables of only one thread at any point, and uses only O(k) copies of shared variables (it does not use extra counters, not even one counter to keep track of the number of threads). Sequentialization is achieved using the concept of a linear interface that captures the effect an unbounded block of processes have on the shared state in a k-round schedule. Our transformation utilizes linear interfaces to sequentialize the program, and to ensure the sequential program explores only reachable states and preserves local invariants.Comment: In Proceedings FIT 2012, arXiv:1207.348
    • 

    corecore