48,775 research outputs found

    Reconstructing Galaxy Spectral Energy Distributions from Broadband Photometry

    Get PDF
    We present a novel approach to photometric redshifts, one that merges the advantages of both the template fitting and empirical fitting algorithms, without any of their disadvantages. This technique derives a set of templates, describing the spectral energy distributions of galaxies, from a catalog with both multicolor photometry and spectroscopic redshifts. The algorithm is essentially using the shapes of the templates as the fitting parameters. From simulated multicolor data we show that for a small training set of galaxies we can reconstruct robustly the underlying spectral energy distributions even in the presence of substantial errors in the photometric observations. We apply these techniques to the multicolor and spectroscopic observations of the Hubble Deep Field building a set of template spectra that reproduced the observed galaxy colors to better than 10%. Finally we demonstrate that these improved spectral energy distributions lead to a photometric-redshift relation for the Hubble Deep Field that is more accurate than standard template-based approaches.Comment: 23 pages, 8 figures, LaTeX AASTeX, accepted for publication in A

    The self-consistent quantum-electrostatic problem in strongly non-linear regime

    Full text link
    The self-consistent quantum-electrostatic (also known as Poisson-Schr\"odinger) problem is notoriously difficult in situations where the density of states varies rapidly with energy. At low temperatures, these fluctuations make the problem highly non-linear which renders iterative schemes deeply unstable. We present a stable algorithm that provides a solution to this problem with controlled accuracy. The technique is intrinsically convergent including in highly non-linear regimes. We illustrate our approach with (i) a calculation of the compressible and incompressible stripes in the integer quantum Hall regime and (ii) a calculation of the differential conductance of a quantum point contact geometry. Our technique provides a viable route for the predictive modeling of the transport properties of quantum nanoelectronics devices.Comment: 28 pages. 14 figures. Added solution to a potential failure mode of the algorith

    Very Singular Similarity Solutions and Hermitian Spectral Theory for Semilinear Odd-Order PDEs

    Full text link
    Very singular self-similar solutions of semilinear odd-order PDEs are studied on the basis of a Hermitian-type spectral theory for linear rescaled odd-order operators.Comment: 49 pages, 12 Figure

    Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study

    Get PDF
    Quantitative, non-invasive and local measurements of arterial mechanical properties could be highly beneficial for early diagnosis of cardiovascular disease and follow up of treatment. Arterial shear wave elastography (SWE) and wave velocity dispersion analysis have previously been applied to measure arterial stiffness. Arterial wall thickness (h) and inner diameter (D) vary with age and pathology and may influence the shear wave propagation. Nevertheless, the effect of arterial geometry in SWE has not yet been systematically investigated. In this study the influence of geometry on the estimated mechanical properties of plates (h = 0.5–3 mm) and hollow cylinders (h = 1, 2 and 3 mm, D = 6 mm) was assessed by experiments in phantoms and by finite element method simulations. In addition, simulations in hollow cylinders with wall thickness difficult to achieve in phantoms were performed (h = 0.5–1.3 mm, D = 5–8 mm). The phase velocity curves obtained from experiments and simulations were compared in the frequency range 200–1000 Hz and showed good agreement (R2 = 0.80 ± 0.07 for plates and R2 = 0.82 ± 0.04 for hollow cylinders). Wall thickness had a larger effect than diameter on the dispersion curves, which did not have major effects above 400 Hz. An underestimation of 0.1–0.2 mm in wall thickness introduces an error 4–9 kPa in hollow cylinders with shear modulus of 21–26 kPa. Therefore, wall thickness should correctly be measured in arterial SWE applications for accurate mechanical properties estimation

    Electron and phonon dispersions of the two dimensional Holstein model: Effects of vertex and non-local corrections

    Get PDF
    I apply the newly developed dynamical cluster approximation (DCA) to the calculation of the electron and phonon dispersions in the two dimensional Holstein model. In contrast to previous work, the DCA enables the effects of spatial fluctuations (non-local corrections) to be examined. Approximations neglecting and incorporating lowest-order vertex corrections are investigated. I calculate the phonon density of states, the renormalised phonon dispersion, the electron dispersion and electron spectral functions. I demonstrate how vertex corrections stabilise the solution, stopping a catastrophic softening of the (π,π)(\pi,\pi) phonon mode. A kink in the electron dispersion is found in the normal state along the (ζ,ζ)(\zeta,\zeta) symmetry direction in both the vertex- and non-vertex-corrected theories for low phonon frequencies, corresponding directly to the renormalised phonon frequency at the (π,0)(\pi,0) point. This kink is accompanied by a sudden drop in the quasi-particle lifetime. Vertex and non-local corrections enhance the effects at large bare phonon frequencies.Comment: I am posting reprints of the final submitted versions of previous articles to improve access. Here ARPES "kinks" are discussed. Article was published in 2003. 17 pages, 9 figure
    • …
    corecore