3,546 research outputs found

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Exciton Control in a Room-Temperature Bulk Semiconductor with Coherent Strain Pulses

    Get PDF
    The coherent manipulation of excitons in bulk semiconductors via the lattice degrees of freedom is key to the development of acousto-optic and acousto-excitonic devices. Wide-bandgap transition metal oxides exhibit strongly bound excitons that are interesting for applications in the deep-ultraviolet, but their properties have remained elusive due to the lack of efficient generation and detection schemes in this spectral range. Here, we perform ultrafast broadband deep-ultraviolet spectroscopy on anatase TiO2_2 single crystals at room temperature, and reveal a dramatic modulation of the exciton peak amplitude due to coherent acoustic phonons. This modulation is comparable to those of nanostructures where exciton-phonon coupling is enhanced by quantum confinement, and is accompanied by a giant exciton shift of 30-50 meV. We model these results by many-body perturbation theory and show that the deformation potential coupling within the nonlinear regime is the main mechanism for the generation and detection of the coherent acoustic phonons. Our findings pave the way to the design of exciton control schemes in the deep-ultraviolet with propagating strain pulses

    A Review on Skin Disease Classification and Detection Using Deep Learning Techniques

    Get PDF
    Skin cancer ranks among the most dangerous cancers. Skin cancers are commonly referred to as Melanoma. Melanoma is brought on by genetic faults or mutations on the skin, which are caused by Unrepaired Deoxyribonucleic Acid (DNA) in skin cells. It is essential to detect skin cancer in its infancy phase since it is more curable in its initial phases. Skin cancer typically progresses to other regions of the body. Owing to the disease's increased frequency, high mortality rate, and prohibitively high cost of medical treatments, early diagnosis of skin cancer signs is crucial. Due to the fact that how hazardous these disorders are, scholars have developed a number of early-detection techniques for melanoma. Lesion characteristics such as symmetry, colour, size, shape, and others are often utilised to detect skin cancer and distinguish benign skin cancer from melanoma. An in-depth investigation of deep learning techniques for melanoma's early detection is provided in this study. This study discusses the traditional feature extraction-based machine learning approaches for the segmentation and classification of skin lesions. Comparison-oriented research has been conducted to demonstrate the significance of various deep learning-based segmentation and classification approaches

    Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide

    Get PDF
    The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.Fil: Baptista, Maurício S.. Universidade de Sao Paulo; BrasilFil: Cadet, Jean. University of Sherbrooke; CanadáFil: Greer, Alexander. City University of New York; Estados UnidosFil: Thomas, Andrés Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    A multimodal conception of bodily awareness

    Get PDF
    One way to characterize the special relation that one has to one's own body is to say that only one's body appears to one from the inside. Although widely accepted, the nature of this specific experiential mode of presentation of the body is rarely spelled out. Most definitions amount to little more than lists of the various body senses (including senses of posture, movement, heat, pressure, and balance). It is true that body senses provide a kind of informational access to one's own body, which one has to no other bodies, by contrast to external senses like vision, which can take many bodies as their object. But a theory of bodily awareness needs to take into account recent empirical evidence that indicates that bodily awareness is infected by a plague of multisensory effects, regardless of any dichotomy between body senses and external senses. Here I will argue in favour of a multimodal conception of bodily awareness. I will show that the body senses fail to fully account for the content of bodily experiences. I will then propose that vision helps compensate for the insufficiencies of the body senses in people who can see. I will finally argue that the multimodality of bodily experiences does not prevent privileged access to one's body

    Early redox activities modulate Xenopus tail regeneration.

    Get PDF
    Redox state sustained by reactive oxygen species (ROS) is crucial for regeneration; however, the interplay between oxygen (O2), ROS and hypoxia-inducible factors (HIF) remains elusive. Here we observe, using an optic-based probe (optrode), an elevated and steady O2 influx immediately upon amputation. The spatiotemporal O2 influx profile correlates with the regeneration of Xenopus laevis tadpole tails. Inhibition of ROS production but not ROS scavenging decreases O2 influx. Inhibition of HIF-1α impairs regeneration and stabilization of HIF-1α induces regeneration in the refractory period. In the regeneration bud, hypoxia correlates with O2 influx, ROS production, and HIF-1α stabilization that modulate regeneration. Further analyses reveal that heat shock protein 90 is a putative downstream target of HIF-1α while electric current reversal is a de facto downstream target of HIF-1α. Collectively, the results show a mechanism for regeneration via the orchestration of O2 influx, ROS production, and HIF-1α stabilization

    A translational research experience in Argentina.

    Get PDF
    Background: The Argentinean programwas initiatedmore than a decade ago as the first experience of systematic translational research focused on NCL in Latin America. The aim was to overcome misdiagnoses and underdiagnoses in the region. Subjects: 216 NCL suspected individuals from 8 different countries and their direct family members. Methods: Clinical assessment, enzyme testing, electron microscopy, and DNA screening. Results and discussion: 1) The study confirmed NCL disease in 122 subjects. Phenotypic studies comprised epileptic seizures and movement disorders, ophthalmology, neurophysiology, image analysis, rating scales, enzyme testing, and electron microscopy, carried out under a consensus algorithm; 2) DNA screening and validation of mutations in genes PPT1 (CLN1), TPP1 (CLN2), CLN3, CLN5, CLN6, MFSD8 (CLN7), and CLN8: characterization of variant types, novel/knownmutations and polymorphisms; 3) Progress of the epidemiological picture in Latin America; and 4) NCL-like pathology studies in progress. The Translational Research Program was highly efficient in addressing the misdiagnosis/underdiagnosis in the NCL disorders. The study of “orphan diseases” in a public administrated hospital should be adopted by the health systems, as it positively impacts upon the family's quality of life, the collection of epidemiological data, and triggers research advances. This article is part of a Special Issue entitled: “Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)”publishedVersio

    The Eighth Central European Conference "Chemistry towards Biology": snapshot

    Get PDF
    The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on 28 August – 1 September 2016The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on 28 August-1 September 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting
    • …
    corecore