49,718 research outputs found

    Physical and numerical sources of computational inefficiency in integration of chemical kinetic rate equations: Etiology, treatment and prognosis

    Get PDF
    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent

    Characteristic, completion or matching timescales? An analysis of temporary boundaries in enzyme kinetics

    Full text link
    Scaling analysis exploiting timescale separation has been one of the most important techniques in the quantitative analysis of nonlinear dynamical systems in mathematical and theoretical biology. In the case of enzyme catalyzed reactions, it is often overlooked that the characteristic timescales used for the scaling the rate equations are not ideal for determining when concentrations and reaction rates reach their maximum values. In this work, we first illustrate this point by considering the classic example of the single-enzyme, single-substrate Michaelis--Menten reaction mechanism. We then extend this analysis to a more complicated reaction mechanism, the auxiliary enzyme reaction, in which a substrate is converted to product in two sequential enzyme-catalyzed reactions. In this case, depending on the ordering of the relevant timescales, several dynamic regimes can emerge. In addition to the characteristic timescales for these regimes, we derive matching timescales that determine (approximately) when the transitions from initial fast transient to steady-state kinetics occurs. The approach presented here is applicable to a wide range of singular perturbation problems in nonlinear dynamical systems.Comment: 35 pages, 11 figure

    Mechanism Deduction from Noisy Chemical Reaction Networks

    Full text link
    We introduce KiNetX, a fully automated meta-algorithm for the kinetic analysis of complex chemical reaction networks derived from semi-accurate but efficient electronic structure calculations. It is designed to (i) accelerate the automated exploration of such networks, and (ii) cope with model-inherent errors in electronic structure calculations on elementary reaction steps. We developed and implemented KiNetX to possess three features. First, KiNetX evaluates the kinetic relevance of every species in a (yet incomplete) reaction network to confine the search for new elementary reaction steps only to those species that are considered possibly relevant. Second, KiNetX identifies and eliminates all kinetically irrelevant species and elementary reactions to reduce a complex network graph to a comprehensible mechanism. Third, KiNetX estimates the sensitivity of species concentrations toward changes in individual rate constants (derived from relative free energies), which allows us to systematically select the most efficient electronic structure model for each elementary reaction given a predefined accuracy. The novelty of KiNetX consists in the rigorous propagation of correlated free-energy uncertainty through all steps of our kinetic analyis. To examine the performance of KiNetX, we developed AutoNetGen. It semirandomly generates chemistry-mimicking reaction networks by encoding chemical logic into their underlying graph structure. AutoNetGen allows us to consider a vast number of distinct chemistry-like scenarios and, hence, to discuss assess the importance of rigorous uncertainty propagation in a statistical context. Our results reveal that KiNetX reliably supports the deduction of product ratios, dominant reaction pathways, and possibly other network properties from semi-accurate electronic structure data.Comment: 36 pages, 4 figures, 2 table

    Mode transitions in a model reaction-diffusion system driven by domain growth and noise

    Get PDF
    Pattern formation in many biological systems takes place during growth of the underlying domain. We study a specific example of a reaction–diffusion (Turing) model in which peak splitting, driven by domain growth, generates a sequence of patterns. We have previously shown that the pattern sequences which are presented when the domain growth rate is sufficiently rapid exhibit a mode-doubling phenomenon. Such pattern sequences afford reliable selection of certain final patterns, thus addressing the robustness problem inherent of the Turing mechanism. At slower domain growth rates this regular mode doubling breaks down in the presence of small perturbations to the dynamics. In this paper we examine the breaking down of the mode doubling sequence and consider the implications of this behaviour in increasing the range of reliably selectable final patterns
    • …
    corecore