4,780 research outputs found

    Run-time resource management in fault-tolerant network on reconfigurable chips

    Get PDF

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    Design and Implementation of High QoS 3D-NoC using Modified Double Particle Swarm Optimization on FPGA

    Get PDF
    One technique to overcome the exponential growth bottleneck is to increase the number of cores on a processor, although having too many cores might cause issues including chip overheating and communication blockage. The problem of the communication bottleneck on the chip is presently effectively resolved by networks-on-chip (NoC). A 3D stack of chips is now possible, thanks to recent developments in IC manufacturing techniques, enabling to reduce of chip area while increasing chip throughput and reducing power consumption. The automated process associated with mapping applications to form three-dimensional NoC architectures is a significant new path in 3D NoC research. This work proposes a 3D NoC partitioning approach that can identify the 3D NoC region that has to be mapped. A double particle swarm optimization (DPSO) inspired algorithmic technique, which may combine the characteristics having neighbourhood search and genetic architectures, also addresses the challenge of a particle swarm algorithm descending into local optimal solutions. Experimental evidence supports the claim that this hybrid optimization algorithm based on Double Particle Swarm Optimisation outperforms the conventional heuristic technique in terms of output rate and loss in energy. The findings demonstrate that in a network of the same size, the newly introduced router delivers the lowest loss on the longest path.  Three factors, namely energy, latency or delay, and throughput, are compared between the suggested 3D mesh ONoC and its 2D version. When comparing power consumption between 3D ONoC and its electronic and 2D equivalents, which both have 512 IP cores, it may save roughly 79.9% of the energy used by the electronic counterpart and 24.3% of the energy used by the latter. The network efficiency of the 3D mesh ONoC is simulated by DPSO in a variety of configurations. The outcomes also demonstrate an increase in performance over the 2D ONoC. As a flexible communication solution, Network-On-Chips (NoCs) have been frequently employed in the development of multiprocessor system-on-chips (MPSoCs). By outsourcing their communication activities, NoCs permit on-chip Intellectual Property (IP) cores to communicate with one another and function at a better level. The important components in assigning application duties, distributing the work to the IPs, and coordinating communication among them are mapping and scheduling methods. This study aims to present an entirely advanced form of research in the area of 3D NoC mapping and scheduling applications, grouping the results according to various parameters and offering several suggestions for further research

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Flexible Spare Core Placement in Torus Topology based NoCs and its validation on an FPGA

    Get PDF
    In the nano-scale era, Network-on-Chip (NoC) interconnection paradigm has gained importance to abide by the communication challenges in Chip Multi-Processors (CMPs). With increased integration density on CMPs, NoC components namely cores, routers, and links are susceptible to failures. Therefore, to improve system reliability, there is a need for efficient fault-tolerant techniques that mitigate permanent faults in NoC based CMPs. There exists several fault-tolerant techniques that address the permanent faults in application cores while placing the spare cores onto NoC topologies. However, these techniques are limited to Mesh topology based NoCs. There are few approaches that have realized the fault-tolerant solutions on an FPGA, but the study on architectural aspects of NoC is limited. This paper presents the flexible placement of spare core onto Torus topology-based NoC design by considering core faults and validating it on an FPGA. In the first phase, a mathematical formulation based on Integer Linear Programming (ILP) and meta-heuristic based Particle Swarm Optimization (PSO) have been proposed for the placement of spare core. In the second phase, we have implemented NoC router addressing scheme, routing algorithm, run-time fault injection model, and fault-tolerant placement of spare core onto Torus topology using an FPGA. Experiments have been done by taking different multimedia and synthetic application benchmarks. This has been done in both static and dynamic simulation environments followed by hardware implementation. In the static simulation environment, the experimentations are carried out by scaling the network size and router faults in the network. The results obtained from our approach outperform the methods such as Fault-tolerant Spare Core Mapping (FSCM), Simulated Annealing (SA), and Genetic Algorithm (GA) proposed in the literature. For the experiments carried out by scaling the network size, our proposed methodology shows an average improvement of 18.83%, 4.55%, 12.12% in communication cost over the approaches FSCM, SA, and GA, respectively. For the experiments carried out by scaling the router faults in the network, our approach shows an improvement of 34.27%, 26.26%, and 30.41% over the approaches FSCM, SA, and GA, respectively. For the dynamic simulations, our approach shows an average improvement of 5.67%, 0.44%, and 3.69%, over the approaches FSCM, SA, and GA, respectively. In the hardware implementation, our approach shows an average improvement of 5.38%, 7.45%, 27.10% in terms of application runtime over the approaches SA, GA, and FSCM, respectively. This shows the superiority of the proposed approach over the approaches presented in the literature.publishedVersio

    Run-time management of many-core SoCs: A communication-centric approach

    Get PDF
    The single core performance hit the power and complexity limits in the beginning of this century, moving the industry towards the design of multi- and many-core system-on-chips (SoCs). The on-chip communication between the cores plays a criticalrole in the performance of these SoCs, with power dissipation, communication latency, scalability to many cores, and reliability against the transistor failures as the main design challenges. Accordingly, we dedicate this thesis to the communicationcentered management of the many-core SoCs, with the goal to advance the state-ofthe-art in addressing these challenges. To this end, we contribute to on-chip communication of many-core SoCs in three main directions. First, we start with a synthesizable SoC with full system simulation. We demonstrate the importance of the networking overhead in a practical system, and propose our sophisticated network interface (NI) that offloads the work from SW to HW. Our results show around 5x and up to 50x higher network performance, compared to previous works. As the second direction of this thesis, we study the significance of run-time application mapping. We demonstrate that contiguous application mapping not only improves the network latency (by 23%) and power dissipation (by 50%), but also improves the system throughput (by 3%) and quality-of-service (QoS) of soft real-time applications (up to 100x less deadline misses). Also our hierarchical run-time application mapping provides 99.41% successful mapping when up to 8 links are broken. As the final direction of the thesis, we propose a fault-tolerant routing algorithm, the maze-routing. It is the first-in-class algorithm that provides guaranteed delivery, a fully-distributed solution, low area overhead (by 16x), and instantaneous reconfiguration (vs. 40K cycles down time of previous works), all at the same time. Besides the individual goals of each contribution, when applicable, we ensure that our solutions scale to extreme network sizes like 12x12 and 16x16. This thesis concludes that the communication overhead and its optimization play a significant role in the performance of many-core SoC
    • 

    corecore