2,369 research outputs found

    Enabling non-linear energy harvesting in power domain based multiple access in relaying networks: Outage and ergodic capacity performance analysis

    Get PDF
    The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.Web of Science87art. no. 81

    Cooperative Communications in Smart Grid Networks

    Get PDF
    The conventional grid system is facing great challenges due to the fast growing electricity demand throughout the world. The smart grid has emerged as the next generation of grid power systems, aimed at providing secure, reliable and low cost power generation, distribution and consumption intelligently. The smart grid communication system within the smart grid network is of fundamental importance to support data transfer and information exchange within the smart grid system. The National Institute of Standards and Technology has identified wireless communications as an important networking technology to be employed in power systems. The reliability of the data transmission is essential for the smart grid system to achieve high accuracy for the power generation, distribution and consumption. In this thesis, we investigate cooperative communications to improve transmission reliability in smart grid networks. Although many issues within cooperative communication have already been addressed, there is a lack of research efforts on cooperative communication for the wireless smart grid communication system which has its own network features and different transmission requirements. In our research, the smart grid communication networks were studied, and cooperative communications in smart grid networks were analysed. The research work mainly focuses on three problems: the application of cooperative relay communications to modern smart grid communication networks, the cooperative relay-based network development strategy, and the optimization of cooperative relay communication for smart grids. For the first problem, the application of cooperative relay communication to a home area network (HAN) of smart grid system is presented. The wireless transmission reliability is identified as the issue of most concern in wireless smart grid networks. We model the smart grid HAN as a wireless mesh network that deploys cooperative relay communication to enhance the transmission reliability. We apply cooperative relay communication to provide a user equipment selection scheme to effectively improve the transmission quality between the electricity equipment and the smart meter. For the second problem, we address the network design and planning problem in the smart grid HAN. The outage performance of direct transmission and cooperative transmission was analysed. Based on the reliability performance metric that we have defined, we propose a HAN deployment strategy to improve the reliability of the transmission links. The proposed HAN deployment strategy is tested in a home environment. The smart meter location optimization problem has also been identified and solved. The simulation results show that our proposed network deployment strategy can guarantee high reliability for smart grid communications in home area networks. For the third problem, the research focuses on the optimization of the cooperative relay transmission regarding the power allocation and relay selection in the neighbourhood area network (NAN) of the smart grid system. Owing to the complexity of the joint optimization problem, reduced-complexity algorithms have been proposed to minimize the transmission power, at the same time, guarantee the link reliability of the cooperative communications. The optimization problem of power allocation and relay selection is formulated and treated as a combinatorial optimization problem. Two sub-optimal solutions that simplify the optimization process are devised. Based on the solutions, two different algorithms are proposed to solve the optimization problem with reduced complexity. The simulation results demonstrate that both two algorithms have good performance on minimizing the total transmission power while guaranteeing the transmission reliability for the wireless smart grid communication system. In this thesis, we consider cooperative communications in a smart grid scenario. We minimize the outage probability and thus improve the reliability of the communications taking place in the smart grid by considering the optimization problem of power control, relay selection and the network deployment problem. Although similar problems might have been well investigated in conventional wireless networks, such as the cellular network, little research has been conducted in smart grid communications. We apply new optimization techniques and propose solutions for these optimization problems specifically tailored for smart grid communications. We demonstrate that, compared to naively applying the algorithms suitable for conventional communications to the smart gird scenario, our proposed algorithm significantly improves the performance of smart grid communications. Finally, we note that, in future work, it will be possible to consider more complex smart grid communications system models. For example, it is worthwhile considering hetregeneous smart communications by combining HAN and wide area networks (WAN). In addition, instead of assuming that all communications have the equal priority, as in this thesis, more comprehensive analysis of the priority of the smart grid communication can be applied to the research

    Bayesian Optimization Enhanced Deep Reinforcement Learning for Trajectory Planning and Network Formation in Multi-UAV Networks

    Full text link
    In this paper, we employ multiple UAVs coordinated by a base station (BS) to help the ground users (GUs) to offload their sensing data. Different UAVs can adapt their trajectories and network formation to expedite data transmissions via multi-hop relaying. The trajectory planning aims to collect all GUs' data, while the UAVs' network formation optimizes the multi-hop UAV network topology to minimize the energy consumption and transmission delay. The joint network formation and trajectory optimization is solved by a two-step iterative approach. Firstly, we devise the adaptive network formation scheme by using a heuristic algorithm to balance the UAVs' energy consumption and data queue size. Then, with the fixed network formation, the UAVs' trajectories are further optimized by using multi-agent deep reinforcement learning without knowing the GUs' traffic demands and spatial distribution. To improve the learning efficiency, we further employ Bayesian optimization to estimate the UAVs' flying decisions based on historical trajectory points. This helps avoid inefficient action explorations and improves the convergence rate in the model training. The simulation results reveal close spatial-temporal couplings between the UAVs' trajectory planning and network formation. Compared with several baselines, our solution can better exploit the UAVs' cooperation in data offloading, thus improving energy efficiency and delay performance.Comment: 15 pages, 10 figures, 2 algorithm

    Scalable wireless sensor networks for dynamic communication environments: simulation and modelling

    No full text
    This thesis explores the deployment of Wireless Sensor Networks (WSNs) on localised maritime events. In particular, it will focus on the deployment of a WSN at sea and estimating what challenges derive from the environment and how they affect communication. This research addresses these challenges through simulation and modelling of communication and environment, evaluating the implications of hardware selection and custom algorithm development. The first part of this thesis consists of the analysis of aspects related to the Medium Access Control layer of the network stack in large-scale networks. These details are commonly hidden from upper layers, thus resulting in misconceptions of real deployment characteristics. Results show that simple solutions have greater advantages when the number of nodes within a cluster increases. The second part considers routing techniques, with focus on energy management and packet delivery. It is shown that, under certain conditions, relaying data can increase energy savings, while at the same time allows a more even distribution of its usage between nodes. The third part describes the development of a custom-made network simulator. It starts by considering realistic radio, channel and interference models to allow a trustworthy simulation of the deployment environment. The MAC and Routing techniques developed thus far are adapted to the simulator in a cross-layer manner. The fourth part consists of adapting the WSN behaviour to the variable weather and topology found in the chosen application scenario. By analysing the algorithms presented in this work, it is possible to find and use the best alternative under any set of environmental conditions. This mechanism, the environment-aware engine, uses both network and sensing data to optimise performance through a set of rules that involve message delivery and distance between origin and cluster hea

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Consistent Sensor, Relay, and Link Selection in Wireless Sensor Networks

    Full text link
    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need to communicate their measurements to one or multiple access points. Information messages are routed stochastically in order to capture the inherent reliability of the broadcast links via multiple hops, where the nodes may be acting as sensors or as relays. We aim at finding optimal sparse solutions where both, the consistency between the selected subset of sensors, relays and links, and the graph connectivity in the selected subnetwork are guaranteed. Furthermore, active nodes should ensure a network performance in a parameter estimation scenario. Two problems are studied: sensor and link selection; and sensor, relay and link selection. To solve such problems, we present tractable optimization formulations and propose two algorithms that satisfy the previous network requirements. We also explore an extension scenario: only link selection. Simulation results show the performance of the algorithms and illustrate how they provide a sparse solution, which not only saves energy but also guarantees the network requirements.Comment: 27 pages, 17 figure
    • …
    corecore