8 research outputs found

    An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle

    Get PDF
    The growth of the world population expected for the next decade will increase the demand for products derived from cattle (i.e., milk and meat). In this sense, precision livestock farming proposes to optimize livestock production using information and communication technologies for monitoring animals. Although there are several methodologies for monitoring foraging behavior, the acoustic method has shown to be successful in previous studies. However, there is no online acoustic method for the recognition of rumination and grazing bouts that can be implemented in a low-cost device. In this study, an online algorithm called bottom-up foraging activity recognizer (BUFAR) is proposed. The method is based on the recognition of jaw movements from sound, which are then analyzed by groups to recognize rumination and grazing bouts. Two variants of the activity recognizer were explored, which were based on a multilayer perceptron (BUFAR-MLP) and a decision tree (BUFAR-DT). These variants were evaluated and compared under the same conditions with a known method for offline analysis. Compared to the former method, the proposed method showed superior results in the estimation of grazing and rumination bouts. The MLP-variant showed the best results, reaching F1-scores higher than 0.75 for both activities. In addition, the MLP-variant outperformed a commercial rumination time estimation system. A great advantage of BUFAR is the low computational cost, which is about 50 times lower than that corresponding to the former method. The good performance and low computational cost makes BUFAR a highly feasible method for real-time execution in a low-cost embedded monitoring system. The advantages provided by this system will allow the development of a portable device for online monitoring of the foraging behavior of ruminants.Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Vanrell, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Martínez Rau, Luciano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Planisich, Alejandra. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; ArgentinaFil: Utsumi, Santiago A.. Michigan State University; Estados UnidosFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin

    Farm Animals’ Behaviors and Welfare Analysis with AI Algorithms: A Review

    Full text link
    peer reviewedNumerous bibliographic reviews related to the use of AI for the behavioral detection of farm animals exist, but they only focus on a particular type of animal. We believe that some techniques were used for some animals that could also be used for other types of animals. The application and comparison of these techniques between animal species are rarely done. In this paper, we propose a review of machine learning approaches used for the detection of farm animals’ behaviors such as lameness, grazing, rumination, and so on. The originality of this paper is matched classification in the midst of sensors and algorithms used for each animal category. First, we highlight the most implemented approaches for different categories of animals (cows, sheep, goats, pigs, horses, and chickens) to inspire researchers interested to conduct investigation and employ the methods we have evaluated and the results we have obtained in this study. Second, we describe the current trends in terms of technological development and new paradigms that will impact the AI research. Finally, we critically analyze what is done and we draw new pathways of research to advance our understanding of animal’s behaviors

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Towards developing support tools for sustainable control of gastrointestinal nematodes in sheep : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Science at Massey University, Palmerston North, Manawatū, New Zealand

    Get PDF
    Gastrointestinal nematode (GIN) parasitism is a major animal health challenge for sheep. Parasitized animals typically display a number of clinical signs, including a reduction in voluntary feed intake, altered grazing behaviour and lethargy. The aim of this thesis was to use remote sensing technologies to advance the development of a methodology where early changes in animal behaviour can be used to help identify sheep suffering ill effects of GIN parasitism, especially in a pre-clinical situation. It was hypothesised that lambs with even modest worm burdens will be less active, graze for less time and spend more time resting than those herd mates that were less heavily parasitized. The movement and behavioural activity of young and mature, infected and uninfected sheep were monitored in a series of studies using global positioning system (GPS) and tri-axial accelerometer sensors. Key behaviours were identified using machine learning techniques. Also assessed was the influence of host genotype on movement activity. Accelerometry data accurately identified grazing, resting and walking activities of sheep. The sensors were able to identify the effects of GIN parasitism on movement and behaviour in sheep. Clear evidence was found that GIN were associated with reduced movement and overall activity in growing lambs, with reductions in time spent ‘grazing’ and ‘walking’ occurring concomitantly with increases in ‘resting’ activity, and before effects were recorded on growth rates. Host genotype also had an effect on movement activity of lambs in untreated sheep, but not in treated individuals. Adult sheep, however, showed no consistent changes in movement and behaviour associated with parasitism, as measured by faecal egg counts. Overall, the findings in this thesis have demonstrated the potential value in remote monitoring of sheep as a diagnostic marker to detect the generally subtle behavioural changes associated with changing GIN infection status. Such monitoring could therefore be used as the basis for deciding whether animals need to be treated with anthelmintic on the basis of individual need, and such decisions could be taken early, i.e. before animals have failed to grow adequately or started to manifest more overt signs of clinical illness such as weight loss

    Evaluation of the ingestive behaviour of the dairy cow under two systems of rotation with slope

    Full text link
    The ingestive behaviour of grazing animals is modulated by the vegetation characteristics, topography and the type of stocking method. This research was carried out in 2019, at the Rumipamba CADER-UCE. It aimed to evaluate the impact of two contrasting stocking methods of dairy cows grazing a pasture with an average of slope >8.5%. Four dairy cows were set to graze a 0.4 ha paddock for 5 days for continuous stocking methods, while for the electric fence methods the dairy cows were restricted to 0.2 ha and the fence was moved uphill every 3 hours, repeating this process four times a day. Cow were equipped with activity sensors for 12 h per day. The whole procedure was repeated 2 times after realizing an equalization cuts and both paddocks, a rest time of 30 days and a random reassignment of paddocks to one of the treatments. The cows showed a difference in terms of the percentage of grazing P=0.0072, being higher with the electric fence (55% of the measurement time). From rising-plate-meter estimates of available biomass along the grazing periods, we calculated despite similar forage allowances (electric fence = 48.06 kg DM/cow/d and continuous = 48.21 DM/cow/d) a higher forage intake was obtained in the electric fence treatment (17.5 kg DM/cow/d) compared the continuous stocking (15.7 kg DM/cow/d) (P=0.006). In terms of milk production animals grazing under the differences electrical fence stocking method tended (P=0.0985) to produce more milk (17.39 kg/d) than those grazing in the continuous system (15.16 kg/d) due to the influence of the slope (P=0.05), while for milk quality the protein content was higher for the electric fence (33.7 g/l) than the continuous method (30.5 g/l) (P=0.039). None of the other milk properties differed between methods (P>0.05)

    A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle

    No full text
    Continuous monitoring of cattle foraging behavior is a major requirement for precision livestock farming applications. Several strategies have been proposed for this task but monitoring of free-ranging cattle for a long period of time has not been fully achieved yet. In this study, an algorithm is proposed for long-term analysis of foraging behavior that uses the regularity of this behavior to recognize grazing and rumination bouts. Acoustic signals are analyzed offline in two main stages: segmentation and classification. In segmentation, a complete recording is analyzed to detect regular masticatory events and to define the time boundaries of foraging activity blocks. This stage also defines blocks that correspond to no foraging activity (resting bouts). The detection of event regularity is based on the autocorrelation of the sound envelope. For classification, the energy of sound signals within a block is analyzed to detect pauses and to characterize their regularity. Rumination blocks present regular pauses, whereas grazing blocks do not. The evaluation of the proposed algorithm showed very good results for the segmentation task and activity classification. Both tasks were extensively analyzed with a new set of multidimensional metrics. Frame-based F1-score was up to 0.962, 0.891 and 0.935 for segmentation, rumination classification, and grazing classification, respectively. The average time estimation error was below 0.5 min for classification of rumination and grazing on recordings of several hours in length. In addition, a comparison for rumination time estimation was done between the proposed system and a commercial one (Hi-Tag; SCR Engineers Ltd., Netanya, Israel). The proposed algorithm showed a narrower error distribution, with a median of −2.56 min compared to −13.55 min in the commercial system. These results suggest that the proposed system can be used in practical applications.Fil: Vanrell, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Galli, Julio Ricardo. Universidad Nacional de Rosario; ArgentinaFil: Utsumi, Santiago A.. Michigan State University; Estados UnidosFil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin
    corecore