1,151 research outputs found

    Robust Mote-Scale Classification of Noisy Data via Machine Learning

    Get PDF

    Crowd-Centric Counting via Unsupervised Learning

    Get PDF
    Counting targets (people or things) within a moni-tored area is an important task in emerging wireless applications,including those for smart environments, safety, and security.Conventional device-free radio-based systems for counting targetsrely on localization and data association (i.e., individual-centric information) to infer the number of targets present in an area(i.e., crowd-centric information). However, many applications(e.g., affluence analytics) require only crowd-centric rather than individual-centric information. Moreover, individual-centric approaches may be inadequate due to the complexity of data association. This paper proposes a new technique for crowd-centric counting of device-free targets based on unsupervised learning, where the number of targets is inferred directly from a low-dimensional representation of the received waveforms. The proposed technique is validated via experimentation using an ultra-wideband sensor radar in an indoor environment.RYC-2016-1938

    Traffic Police Effectiveness and Efficiency Evaluations, an Overview of Methodological Considerations

    Get PDF
    Context: Every government implements various policies to mitigate road traffic injuries (RTIs). Many of these interventions are performed by traffic police. To evaluate effectiveness and efficiency of police enforcement, numerous studies have been conducted. Potential capabilities of epidemiology could get opportunity to improve these studies. The aim of this study was to extract and discuss some related methodological points of traffic police effectiveness and efficiency from related studies, in view of epidemiology discipline. Evidence Acquisition: Related articles were searched with “traffic police”, “effectiveness”, “efficiency” and “road safety” keywords in ScienceDirect, PubMed and Safetylit databases. Related papers were selected and read carefully to summarize and discuss the epidemiological points with aims of giving clues to improve quality of studies. Results: From a total of 797 articles, 20 were eligible which among them 17 articles were about effectiveness and 3 of them were about efficiency evaluations. Discussed points were the method of study, taking a holistic view to all positive and negative side effects, desired inputs and outputs, relation pattern between police enforcement and outcome and potential confounders. Conclusions: Better understanding of the effectiveness and efficiency mechanism and having valid evaluation required considering specific theories and points in this field. Applying a dynamic approach with considering epidemiological concepts and sophisticated statistical models could improve quality of studies in this field

    Doctor of Philosophy

    Get PDF
    dissertationLow-cost wireless embedded systems can make radio channel measurements for the purposes of radio localization, synchronization, and breathing monitoring. Most of those systems measure the radio channel via the received signal strength indicator (RSSI), which is widely available on inexpensive radio transceivers. However, the use of standard RSSI imposes multiple limitations on the accuracy and reliability of such systems; moreover, higher accuracy is only accessible with very high-cost systems, both in bandwidth and device costs. On the other hand, wireless devices also rely on synchronized notion of time to coordinate tasks (transmit, receive, sleep, etc.), especially in time-based localization systems. Existing solutions use multiple message exchanges to estimate time offset and clock skew, which further increases channel utilization. In this dissertation, the design of the systems that use RSSI for device-free localization, device-based localization, and breathing monitoring applications are evaluated. Next, the design and evaluation of novel wireless embedded systems are introduced to enable more fine-grained radio signal measurements to the application. I design and study the effect of increasing the resolution of RSSI beyond the typical 1 dB step size, which is the current standard, with a couple of example applications: breathing monitoring and gesture recognition. Lastly, the Stitch architecture is then proposed to allow the frequency and time synchronization of multiple nodes' clocks. The prototype platform, Chronos, implements radio frequency synchronization (RFS), which accesses complex baseband samples from a low-power low-cost narrowband radio, estimates the carrier frequency offset, and iteratively drives the difference between two nodes' main local oscillators (LO) to less than 3 parts per billion (ppb). An optimized time synchronization and ranging protocols (EffToF) is designed and implemented to achieve the same timing accuracy as the state-of-the-art but with 59% less utilization of the UWB channel. Based on this dissertation, I could foresee Stitch and RFS further improving the robustness of communications infrastructure to GPS jamming, allow exploration of applications such as distributed beamforming and MIMO, and enable new highly-synchronous wireless sensing and actuation systems

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper
    • …
    corecore