1,067 research outputs found

    Passport: Improving Automated Formal Verification Using Identifiers

    Full text link
    Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than making the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq model with three new encoding mechanisms for identifiers: category vocabulary indexing, subword sequence modeling, and path elaboration. We compare Passport to three existing base tools which Passport can enhance: ASTactic, Tac, and Tok. In head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools. Combining the three Passport-enhanced tools automatically proves 38% more theorems than the three base tools together, without Passport's enhancements. Finally, together, these base tools and Passport-enhanced tools prove 45% more theorems than the combined base tools without Passport's enhancements. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof synthesis, leading to higher-quality software

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    A framework for automated concurrency verification

    Get PDF
    Reasoning systems based on Concurrent Separation Logic make verifying complex concurrent algorithms readily possible. Such algorithms contain subtle protocols of permission and resource transfer between threads; to cope with these intricacies, modern concurrent separation logics contain many moving parts and integrate many bespoke logical components. Verifying concurrent algorithms by hand consumes much time, effort, and expertise. As a result, computer-assisted verification is a fertile research topic, and fully automated verification is a popular research goal. Unfortunately, the complexity of modern concurrent separation logics makes them hard to automate, and the proliferation and fast turnover of such logics causes a downward pressure against building tools for new logics. As a result, many such logics lack tooling. This dissertation proposes Starling: a scheme for creating concurrent program logics that are automatable by construction. Starling adapts the existing Concurrent Views Framework for sound concurrent reasoning systems, overlaying a framework for reducing concurrent proof outlines to verification conditions in existing theories (such as those accepted by off-the-shelf sequential solvers). This dissertation describes Starling in a bottom-up, modular manner. First, it shows the derivation of a series of general concurrency proof rules from the Views framework. Next, it shows how one such rule leads to the Starling framework itself. From there, it outlines a series of increasingly elaborate frontends: ways of decomposing individual Hoare triples over atomic actions into verification conditions suitable for encoding into backend theories. Each frontend leads to a concurrent program logic. Finally, the dissertation presents a tool for verifying C-style concurrent proof outlines, based on one of the above frontends. It gives examples of such outlines, covering a variety of algorithms, backend solvers, and proof techniques

    ML + FV = ♡\heartsuit? A Survey on the Application of Machine Learning to Formal Verification

    Get PDF
    Formal Verification (FV) and Machine Learning (ML) can seem incompatible due to their opposite mathematical foundations and their use in real-life problems: FV mostly relies on discrete mathematics and aims at ensuring correctness; ML often relies on probabilistic models and consists of learning patterns from training data. In this paper, we postulate that they are complementary in practice, and explore how ML helps FV in its classical approaches: static analysis, model-checking, theorem-proving, and SAT solving. We draw a landscape of the current practice and catalog some of the most prominent uses of ML inside FV tools, thus offering a new perspective on FV techniques that can help researchers and practitioners to better locate the possible synergies. We discuss lessons learned from our work, point to possible improvements and offer visions for the future of the domain in the light of the science of software and systems modeling.Comment: 13 pages, no figures, 3 table
    • …
    corecore