680 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Formal and Fault Tolerant Design

    Get PDF
    Software quality and reliability were verified for a long time at the post-implementation level (test, fault sce-nario ...). The design of embedded systems and digital circuits is more and more complex because of inte-gration density, heterogeneity. Now almost ¾ of the digital circuits contain at least one processor, that is, can execute software code. In other words, co-design is the most usual case and traditional verification by simu-lation is no more practical. Moreover, the increase in integration density comes with a decrease in the reliabil-ity of the components. So fault detection, diagnostics techniques, introspection are essential for defect toler-ance, fault tolerance and self repair of safety-critical systems. The use of a formal specification language is considered as the foundation of a real validation. What we would like to emphasize is that refinement (from an abstract model to the point where the system will be implemented) could be and should be formal too in order to ensure the traceability of requirements, to man-age such development projects and so to design fault-tolerant systems correct by proven construction. Such a thorough approach can be achieved by the automation or semi-automation of the refinement process. We have studied how to ensure the traceability of these requirements in a component-based approach. Re-liability, fault tolerance can be seen here as particular refinement steps. For instance, a given formal specifi-cation of a system/component may be refined by adding redundancy (data, computation, component) and be verified to be fault-tolerant w.r.t. some given fault scenarios. A self-repair component can be defined as the refinement of its original form enhanced with error detection. We describe in this paper the PCSI project (Zero Defect Systems) based on B Method, VHDL and PSL. The three modeling approaches can collaborate together and guarantee the codesign of embedded systems for which the requirements and the fault-tolerant aspects are taken into account for the beginning and formally verified all along the implementation process

    Static Analysis of Circuits for Security

    Get PDF
    The purpose of the present work is to define a methodology to analyze a system description given in VHDL code and test its security properties. In particular the analysis is aimed at ensuring that a malicious user cannot make a circuit output the secret data it contains

    Extended Model driven Architecture to B Method

    Get PDF
    International audienceModel Driven Architecture (MDA) design approach proposes to separate design into two stages: implementation independent stage then an implementation-dependent one. This improves the reusability, the reusability, the standability, the maintainability, etc. Here we show how MDA can be augmented using a formal refinement approach: B method. Doing so enables to gradually refine the development from the abstract specification to the executing implementation; furthermore it permits to prove the coherence between components in low levels even if they are implemented in different technologies

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information
    corecore