281 research outputs found

    Explicit Reference Governor for Continuous Time Nonlinear Systems Subject to Convex Constraints

    Full text link
    This paper introduces a novel closed-form strategy that dynamically modifies the reference of a pre-compensated nonlinear system to ensure the satisfaction of a set of convex constraints. The main idea consists of translating constraints in the state space into constraints on the Lyapunov function and then modulating the reference velocity so as to limit the value of the Lyapunov function. The theory is introduced for general nonlinear systems subject to convex constraints. In the case of polyhedric constraints, an explicit solution is provided for the large and highly relevant class of nonlinear systems whose Lyapunov function is lower-bounded by a quadratic form. In view of improving performances, further specializations are provided for the relevant cases of linear systems and robotic manipulators.Comment: Submitted to: IEEE Transactions on Automatic Contro

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Direct data-driven control of constrained linear parameter-varying systems: A hierarchical approach

    Get PDF
    In many nonlinear control problems, the plant can be accurately described by a linear model whose operating point depends on some measurable variables, called scheduling signals. When such a linear parameter-varying (LPV) model of the open-loop plant needs to be derived from a set of data, several issues arise in terms of parameterization, estimation, and validation of the model before designing the controller. Moreover, the way modeling errors affect the closed-loop performance is still largely unknown in the LPV context. In this paper, a direct data-driven control method is proposed to design LPV controllers directly from data without deriving a model of the plant. The main idea of the approach is to use a hierarchical control architecture, where the inner controller is designed to match a simple and a-priori specified closed-loop behavior. Then, an outer model predictive controller is synthesized to handle input/output constraints and to enhance the performance of the inner loop. The effectiveness of the approach is illustrated by means of a simulation and an experimental example. Practical implementation issues are also discussed.Comment: Preliminary version of the paper "Direct data-driven control of constrained systems" published in the IEEE Transactions on Control Systems Technolog

    Reference tracking stochastic model predictive control over unreliable channels and bounded control actions

    Full text link
    A stochastic model predictive control framework over unreliable Bernoulli communication channels, in the presence of unbounded process noise and under bounded control inputs, is presented for tracking a reference signal. The data losses in the control channel are compensated by a carefully designed transmission protocol, and that of the sensor channel by a dropout compensator. A class of saturated, disturbance feedback policies is proposed for control in the presence of noisy dropout compensation. A reference governor is employed to generate trackable reference trajectories and stability constraints are employed to ensure mean-square boundedness of the reference tracking error. The overall approach yields a computationally tractable quadratic program, which can be iteratively solved online

    Slijeđenje reference s ograničenjima zasnovano na homotetičnim skupovima

    Get PDF
    In this paper, we consider the problem of constrained tracking of piecewise constant references for nonlinear dynamical systems. In the considered problem we assume that an existing controller satisfies constraints in a corresponding positive-invariant set of the system. To solve the problem we propose the use of homothetic transformations of the positive-invariant set to modify the existing control law. The proposed approach can be implemented as a tracking model predictive control or as a reference governor. Simulation and experimental results are provided, showing the applicability of the proposed approach to a class of nonlinear systems.U radu se razmatra problem slijeđenja reference s ograničenjima za nelinearne dinamičke sustave. Polazna je pretpostavka da postojeći zakon upravljanja zadovoljava ograničenja u pripadnom invarijantom skupu sustava. Uz takvu pretpostavku u radu se predlaže primjena homotetične transformacije invarijantnih skupova kako bi se izmjenio postojeći zakon upravljanja. Predloženi pristup se može primjeniti u sklopu modelskog prediktivnog upravljanja za slijeđenje reference ili samostalno za oblikovanje reference. Dani su simulacijski i eksperimentalni rezultati koji pokazuju primjenjivost predložene metode za klasu nelinearnih sustava

    Control Barrier Function for Linearizable Systems with High Relative Degrees from Signal Temporal Logics: A Reference Governor Approach

    Full text link
    This paper considers the safety-critical navigation problem with Signal Temporal Logic (STL) tasks. We developed an explicit reference governor-guided control barrier function (ERG-guided CBF) method that enables the application of first-order CBFs to high-order linearizable systems. This method significantly reduces the conservativeness of the existing CBF approaches for high-order systems. Furthermore, our framework provides safety-critical guarantees in the sense of obstacle avoidance by constructing the margin of safety and updating direction of safe evolution in the agent's state space. To improve control performance and enhance STL satisfaction, we employ efficient gradient-based methods for iteratively learning optimal parameters of ERG-guided CBF. We validate the algorithm through both high-order linear and nonlinear systems. A video demonstration can be found on: \url{https://youtu.be/ZRmsA2FeFR4

    Safe Control and Learning Using Generalized Action Governor

    Full text link
    This paper introduces the Generalized Action Governor, which is a supervisory scheme for augmenting a nominal closed-loop system with the capability of strictly handling constraints. After presenting its theory for general systems and introducing tailored design approaches for linear and discrete systems, we discuss its application to safe online learning, which aims to safely evolve control parameters using real-time data to improve performance for uncertain systems. In particular, we propose two safe learning algorithms based on integration of reinforcement learning/data-driven Koopman operator-based control with the generalized action governor. The developments are illustrated with a numerical example.Comment: 10 pages, 4 figure

    Multi-Parametric Extremum Seeking-based Auto-Tuning for Robust Input-Output Linearization Control

    Full text link
    We study in this paper the problem of iterative feedback gains tuning for a class of nonlinear systems. We consider Input-Output linearizable nonlinear systems with additive uncertainties. We first design a nominal Input-Output linearization-based controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model-free multi-parametric extremum seeking (MES) control to iteratively auto-tune the feedback gains. We analyze the stability of the whole controller, i.e. robust nonlinear controller plus model-free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example.Comment: To appear at the IEEE CDC 201

    Feedback Motion Prediction for Safe Unicycle Robot Navigation

    Full text link
    As a simple and robust mobile robot base, differential drive robots that can be modelled as a kinematic unicycle find significant applications in logistics and service robotics in both industrial and domestic settings. Safe robot navigation around obstacles is an essential skill for such unicycle robots to perform diverse useful tasks in complex cluttered environments, especially around people and other robots. Fast and accurate safety assessment plays a key role in reactive and safe robot motion design. In this paper, as a more accurate and still simple alternative to the standard circular Lyapunov level sets, we introduce novel conic feedback motion prediction methods for bounding the close-loop motion trajectory of the kinematic unicycle robot model under a standard unicycle motion control approach. We present an application of unicycle feedback motion prediction for safe robot navigation around obstacles using reference governors, where the safety of a unicycle robot is continuously monitored based on the predicted future robot motion. We investigate the role of motion prediction on robot behaviour in numerical simulations and conclude that fast and accurate feedback motion prediction is key for fast, reactive, and safe robot navigation around obstacles.Comment: 11 pages, 5 figures, extended version of a paper submitted to a conference publicatio
    corecore