10,760 research outputs found

    Economic evaluation of bio-based supply chains with CO2 capture and utilisation

    Get PDF
    Carbon capture and storage (CCS) and carbon capture and utilisation (CCU) are acknowledged as important R&D priorities to achieve environmental goals set for next decades. This work studies biomass-based energy supply chains with CO2 capture and utilisation. The problem is formulated as a mixed-integer linear program. This study presents a flexible supply chain superstructure to answer issues on economic and environmental benefits achievable by integrating biomass-coal plants, CO2 capture and utilisation plants; i.e. location of intermediate steps, fraction of CO2 emissions captured per plant, CO2 utilisation plants' size, among others. Moreover, eventual incentives and environmental revenues will be discussed to make an economically feasible project. A large-size case study located in Spain will be presented to highlight the proposed approach. Two key scenarios are envisaged: (i) Biomass, capture or utilisation of CO2 are not contemplated; (ii) Biomass, capture and CO2 utilisation are all considered. Finally, concluding remarks are drawn.Peer ReviewedPostprint (author's final draft

    Cost effectiveness of bio-ethanol to reduce carbon dioxide emissions in Greece

    Get PDF
    The purpose of this study is to evaluate ethanol cost- effectiveness with regards to carbon dioxide emissions. Actually, bio-fuel production is only viable thanks to the tax credit policy resulting in economic ‘deadweight’ loss. The environmental performance is assessed under the Life Cycle Assessment (LCA) framework. Economic burden to society to support the activity divided by avoided CO2 equivalent emissions indicates the bio-ethanol cost effectiveness. Agricultural feedstock supply that comprises of sugarbeets, grains and industrial processing sub-models are articulated in a regional sector model. The maximization of total welfare determines optimal crop mix for farmers and the best configurations for industry. This is illustrated for bio-ethanol produced by the ex-sugar industry in Thessaly, Greece. Life cycle activity analysis showed that, at the optimum, CO2 emission is reduced between 1 and 1.5 t of carbon dioxide equivalent per ton of ethanol. The unitary cost falls in the range of 100 to 250 euro per ton of CO2 and it is remarkably dependent on the agricultural policy scenario.Cost effectiveness, ethanol, mathematical programming, life cycle assessment, greenhouse gases

    Eco-efficient supply chain networks: Development of a design framework and application to a real case study

    Get PDF
    © 2015 Taylor & Francis. This paper presents a supply chain network design framework that is based on multi-objective mathematical programming and that can identify 'eco-efficient' configuration alternatives that are both efficient and ecologically sound. This work is original in that it encompasses the environmental impact of both transportation and warehousing activities. We apply the proposed framework to a real-life case study (i.e. Lindt & SprĂŒngli) for the distribution of chocolate products. The results show that cost-driven network optimisation may lead to beneficial effects for the environment and that a minor increase in distribution costs can be offset by a major improvement in environmental performance. This paper contributes to the body of knowledge on eco-efficient supply chain design and closes the missing link between model-based methods and empirical applied research. It also generates insights into the growing debate on the trade-off between the economic and environmental performance of supply chains, supporting organisations in the eco-efficient configuration of their supply chains

    Spatial biomass resource planning framework for co-firing under carbon policy scheme

    Get PDF
    Effective spatial planning is crucial for the cost-effectiveness and sustainable development of biomass energy resources due to the diffuse nature of biomass and high transportation cost. To leverage the existing capitals of the fossil fuels energy systems, portions of biomass can be integrated as fuel within the existing energy facilities through co-firing technology. Although biomass co-firing operates at a low retrofitting cost environment, this does not eliminate all the associated cost required in supplying the biomass to the power generation facilities. This paper presented the development of a spatial biomass resource planning framework which integrates several modelling tools such as Geographical Information System (GIS), Analytic Hierarchy Process (AHP) and Mixed-Integer Linear Programming (MILP) to investigate the level of carbon prices needed to support co-firing implementation in Malaysia in 2020. The results have been showing that carbon price range of 3 - 12 USD/t can be imposed by Malaysia in order to achieve the future national renewable and environmental targets while reducing the coal-based industrial emissions of up to 19.75 %

    Improved resource efficiency and cascading utilisation of renewable materials

    Get PDF
    In light of various environmental problems and challenges concerning resource allocation, the utilisation of renewable resources is increasingly important for the efficient use of raw materials. Therefore, cascading utilisation (i.e., the multiple material utilisations of renewable resources prior to their conversion into energy) and approaches that aim to further increase resource efficiency (e.g., the utilisation of by-products) can be considered guiding principles. This paper therefore introduces the Special Volume “Improved Resource Efficiency and Cascading Utilisation of Renewable Materials”. Because both research aspects, resource efficiency and cascading utilisation, belong to several disciplines, the Special Volume adopts an interdisciplinary perspective and presents 16 articles, which can be divided into four subjects: Innovative Materials based on Renewable Resources and their Impact on Sustainability and Resource Efficiency, Quantitative Models for the Integrated Optimisation of Production and Distribution in Networks for Renewable Resources, Information Technology-based Collaboration in Value Generating Networks for Renewable Resources, and Consumer Behaviour towards Eco-friendly Products. The interdisciplinary perspective allows a comprehensive overview of current research on resource efficiency, which is supplemented with 15 book reviews showing the extent to which textbooks of selected disciplines already refer to resource efficiency. This introductory article highlights the relevance of the four subjects, presents summaries of all papers, and discusses future research directions. The overall contribution of the Special Volume is that it bridges the resource efficiency research of selected disciplines and that it presents several approaches for more environmentally sound production and consumption

    Bio-energy production in the sugar industry: an integrated modeling approach

    Get PDF
    Recent reforms in the Common Agricultural Policy and the sugar regime caused serious concerns for the future of the European sugar industry. At the same time, the European Commission considers transportation bio-fuels as a key factor for reducing reliance on imported fuels, emission levels of greenhouse gases and to meet rural development goals. Matching the sugar sector with bio-ethanol production may create opportunities for sustainable management of the existing sugar industry infrastructure and also serve bio-fuel policy targets. A partial equilibrium economic model is used in order to evaluate the shift from sugar to bio-ethanol production in Thessaly, Greece. In the agricultural feedstock supply and industrial processing sub-models are articulated indicating optimal crop mix for farmers and the best technology configurations for industry. The joint ethanol-biogas option appears to be preferable using sugar beet and wheat, whereas capacity selected amounts at 120 kt of ethanol.Sugar beet, grain, ethanol, mathematical programming, Greece, Agricultural and Food Policy, Food Consumption/Nutrition/Food Safety,

    Quantitative Genetics and Functional-Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    Full text link
    Background and Aims: Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods: The GreenLab model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions: By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits - such as cob weight - and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GreenLab maize model. The paper discusses the potentials of GreenLab to represent environment x genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand

    Social, environmental and economic impacts of alternative energy and fuel supply chains

    Get PDF
    Energy supply nowadays, being a vital element of a country’s development, has to independently meet diverse, sustainability criteria, be it economic, environmental and social. The main goal of the present research work is to present a methodological framework for the evaluation of alternative energy and fuel Supply Chains (SCs), consisting of a broad topology (representation) suggested, encompassing all the well-known energy and fuel SCs, under a unified scheme, a set of performance measures and indices as well as mathematical model development, formulated as Multi-objective Linear Programming with the extension of incorporating binary decisions as well (Multi-objective Mixed Integer-Linear programming). Basic characteristics of the current modelling approach include the adaptability of the model to be applied at different levels of energy SCs decisions, under different time frames and for multiple stakeholders. Model evaluation is carried for a set of Greek islands, located in the Aegean Archipelagos, examining both the existing energy supply options as well future, more sustainable Energy Supply Chains (ESCs) configurations. Results of the specific research work reveal the social and environmental costs which are underestimated under the traditional energy supply options' evaluation, as well as the benefits that may be produced from renewable energy based applications in terms of social security and employment
    • 

    corecore