394 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Improved space vector modulation with reduced switching vectors for multi-phase matrix converter

    Get PDF
    Multi-phase converter inherits numerous advantages, namely superior fault tolerance, lower per-leg power rating and higher degree of freedom in control. With these advantages, this thesis proposes an improved space vector modulation (SVM) technique to enhance the ac-to-ac power conversion capability of the multi-phase matrix converter. The work is set to achieve two objectives. First is to improve the SVM of a three-to-seven phase single end matrix converter by reducing number of space vector combinations. Second is to use the active vector of the SVM to eliminate the common-mode voltage due to the heterogeneous switching combination of a dual three-to-five phase matrix converter. In the first part, the proposed technique utilizes only 129 out of 2,187 possible active space vectors. With the reduction, the SVM switching sequence is greatly simplified and the execution time is shortened. Despite this, no significant degradation in the output and the input waveform quality is observed from the MATLAB/Simulink simulation and the hardware prototype. The results show that the output voltage can reach up to 76.93% of the input voltage, which is the maximum physical limit of a three-to-seven phase matrix converter. In addition, the total harmonics distortion (THD) for the output voltage is measured to be below 5% over the operating frequency range of 0.1 Hz to 300 Hz. For the second part, the common-mode voltage elimination is based on the cancellation of the resultant vectors (that causes the common-mode to be formed), using a specially derived active vectors of the dual matrix converter. The elimination strategy is coupled with the ability to control the input power factor to unity. The proposed concept is verified by the MATLAB/Simulink simulation and is validated using a 5 kW three-to-five phase matrix converter prototype. The SVM switching algorithm itself is implemented on a dSPACE-1006 digital signal processor platform. The results prove that the common-mode voltage is successfully eliminated from the five-phase induction motor winding. Furthermore, the output phase voltage is boosted up to 150% of the input voltage in linear modulation range

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Predictive current control in electrical drives: an illustrated review with case examples using a five-phase induction motor drive with distributed windings

    Get PDF
    The industrial application of electric machines in variable-speed drives has grown in the last decades thanks to the development of microprocessors and power converters. Although three-phase machines constitute the most common case, the interest of the research community has been recently focused on machines with more than three phases, known as multiphase machines. The principal reason lies in the exploitation of their advantages like reliability, better current distribution among phases or lower current harmonic production in the power converter than conventional three-phase ones, to name a few. Nevertheless, multiphase drives applications require the development of complex controllers to regulate the torque (or speed) and flux of the machine. In this regard, predictive current controllers have recently appeared as a viable alternative due to an easy formulation and a high flexibility to incorporate different control objectives. It is found however that these controllers face some peculiarities and limitations in their use that require attention. This work attempts to tackle the predictive current control technique as a viable alternative for the regulation of multiphase drives, paying special attention to the development of the control technique and the discussion of the benefits and limitations. Case examples with experimental results in a symmetrical five-phase induction machine with distributed windings in motoring mode of operation are used to this end

    A multilevel converter with a floating bridge for open-ended winding motor drive application

    Get PDF
    In this thesis, a dual inverter topology is considered as an alternative to a multilevel converter for the control of high speed machines. Instead of feeding to one end of the stator with a single power converter, this topology feeds from both sides of the stator winding using two converters, thus achieving multilevel output voltage waveforms across the load. A large amount of published work in the area of open end winding power converter topologies are focused on symmetrical voltage sources. This published research recognises the advantages of the converter system in terms of increased reliability, improved power sharing capability and elimination of common mode voltages when compared to traditional single sided three phase converter solutions. However isolated DC supplies come with the price of additional components thus increase size, weight and losses of the converter system. The aim of this project is, therefore, to investigate on reducing size, weight and losses of the open end winding motor drive by eliminating the need for isolated supply as well to achieve multilevel output voltage waveform. A traditional open-end winding induction motor drive has been analysed in terms of weight and losses and it has been clearly identified that the isolation transformer not only increases the size and weight of a drive system but also includes additional losses. A modified dual inverter system has then been proposed where one of the bridge inverters is floating, thus eliminated the need for isolated supplies. An asymmetric DC voltage sources ratio of 2:1 is utilised to achieve multilevel output voltage waveform across the load. The switching sequences are also analysed to identify the charging and discharging sequences to achieve control over floating capacitor voltage. This thesis describes the theoretical derivation of the modified converter model and algorithms as well as experimental results from an 11kW laboratory prototype
    corecore