139 research outputs found

    Design and Fabrication of Origami Elements for use in a Folding Robot Structure

    Get PDF
    The aim of the research is to investigate the methodology of the design and fabrication of folding robots that depend on the origami structures. The use of origami structures as a foundation to build reconfigurable and morphing robots that could assist in search and rescue (SAR) tasks are investigated. The design of the origami folding structures divided into three stages: consideration of the geometry of the origami structure, the hinge design, and the actuation system. The result of investigating three origami structures shows the ability to use the unit cell of the origami ball structure as a self-folding element. Furthermore, the novel type of origami structure for manipulation was created according to this result. This novel structure was designed to be a soft manipulation robot arm. Two approaches are used to design and fabricate flexure hinge. The first is by using a 3D printed multi-material technique. By this technique, the hinge printed using soft and solid material at the same time, which is Tango plus flx930 for soft material and Vero for solid material. The soft material act as a flexure hinge. Therefore, three tests were operated for it to calculate the tensile force, fatigue limit, and the required bend force. The second approach is by using acrylic and Kapton materials. Two types of actuation systems were studied: the external actuation system and embedded actuation system. The external actuation system was used for the Origami structure for manipulation, while the embedded actuation system was used for the self-folding structure. The shape memory alloy wires in torsion (TSW) and bending (BSW) was used in an embedded actuation system. A unit cell of origami ball was fabricated as a self-folding element by using three approaches: manually, acrylic, and Kapton and 3D printing. It is actuated by using shape memory alloy wire. Furthermore, an origami structure for manipulation was fabricated and actuated using an external actuation system. This novel type of origami structure provided an excellent bend motion ability

    Reconfigurable Flood Wall Inspired by Architected Origami

    Get PDF
    Recent interest in the art of origami has opened a wide range of engineering applications and possibilities. Shape changing structures based on origami have had a large influence on the drive for efficient, sustainable engineering solutions. However, development in novel macro-scale utilization is lacking compared to the effort towards micro-scale devices. There exists an opening for environmentally actuated structures that improve quality for life of humans and the natural environment. Specifically, resilient infrastructure systems could potentially benefit from the tailorable properties and programmable reconfiguration of origami-inspired designs. The realm of flood protection and overall water resources management creates a unique opportunity for adaptable structures. A flood protection system, or flood wall, is one application of the origami technique. In many situations, flood protection is visually displeasing and hinders an otherwise scenic natural environment within a cityscape. By applying a permanent, adaptable protection system in flood-prone areas, not only will general aesthetics be conserved, but quick deployment in disaster situations will be ensured. With a rapidly changing climate and an increase in storm disaster events, an efficient flood-protection system is vital. In this study, simple rigid flood barriers are compared to adaptable wall systems that utilize multi-stable configurations. The flood event is characterized by a surcharge of water that is suddenly introduced–like that of a flash flood–and sustained at steady-state. Small-scale prototypes are tested in a hydraulic flume and compared to a numerical simulation for validation.Ohio State University College of Engineering Undergraduate Research ScholarshipNo embargoAcademic Major: Civil Engineerin

    Enabling New Functionally Embedded Mechanical Systems Via Cutting, Folding, and 3D Printing

    Get PDF
    Traditional design tools and fabrication methods implicitly prevent mechanical engineers from encapsulating full functionalities such as mobility, transformation, sensing and actuation in the early design concept prototyping stage. Therefore, designers are forced to design, fabricate and assemble individual parts similar to conventional manufacturing, and iteratively create additional functionalities. This results in relatively high design iteration times and complex assembly strategies

    Reconfigurable self-assembled DNA devices

    Get PDF
    Modular reconfigurable systems can be achieved with DNA origami, demonstrating the potential to generate molecular robots

    Volumetric-mapping-based inverse design of 3D architected materials and mobility control by topology reconstruction

    Full text link
    The recent development of modular origami structures has ushered in a new era for active metamaterials with multiple degrees of freedom (multi-DOF). Notably, no systematic inverse design approach for volumetric modular origami structures has been reported. Moreover, very few topologies of modular origami have been studied for the design of active metamaterials with multi-DOF. Herein, we develop an inverse design method and reconfigurable algorithm for constructing 3D active architected structures - we synthesize modular origami structures that can be volumetrically mapped to a target 3D shape. We can control the reconfigurability by reconstructing the topology of the architected structures. Our inverse design based on volumetric mapping with mobility control by topology reconstruction can be used to construct architected metamaterials with any 3D complex shape that are also transformable with multi-DOF. Our work opens a new path toward 3D reconfigurable structures based on volumetric inverse design. This work is significant for the design of 3D active metamaterials and 3D morphing devices for automotive, aerospace, and biomedical engineering applications.Comment: 36 page

    Utilizing Systematic Design and Shape Memory Alloys to Enhance Actuation of Modular High-Frequency Origami Robots

    Get PDF
    Shape memory alloys (SMAs) describe a group of smart metallic materials that can be deformed by external magnetic, thermal, or mechanical influence and then returned to a predetermined shape through the cycling of temperature or stress. They have several advantages, such as having excellent mechanical properties, being low cost, and being easily manufactured, while also providing a compact size, completely silent operation, high work density, and requiring less maintenance over time. SMAs can undergo sold-to-solid phase transformations, and it is because of these phase transformations that they can experience shape memory effect (SME); or the ability to recover from a deformed shape to an initially determined shape through the cycling of temperature. However, since SME requires the cycling of temperature to actuate SMAs, the actuation frequency of these materials has been slow for small-scale applications, as actuation speed is limited by the time it takes to transition from a higher temperature (actuated, pre-determined state) to a lower temperature (flexible, reconfigurable state). While SMAs are known to be highly advantageous, their main drawback is that they are one of the slowest actuation methods in the field of origami robotics. SMAs cannot actuate quickly enough cyclically due to the long cooling times required to get from their austenite (higher temperature, actuated, pre-determined state) phase to their martensite (lower temperature, flexible, reconfigurable state) phase. Researchers have attempted to achieve a higher actuation speed in previous projects by using active cooling agents. However, this study investigated the use of SMAs to initiate high-frequency cyclic movement through a small-scale origami fold without an active cooling source. This study used a combination of different system design parameters to mechanically hasten the actuation speed of a folding hinge with no cooling component present. Through only design and a complete understanding of the SMAs, this study achieved consistent and relatively high results (\u3e1.5 Hz) of an actuation speed for a system of this size. This study discovered knowledge regarding the composition, material properties, and actuation limits of SMAs, and a new systematic design method was proposed for creating origami robots

    Inspiration From Games and Entertainment Artifacts: A Rising Paradigm for Designing Mechanisms and Algorithms in Robotics

    Get PDF
    Games and toys have been serving as entertainment tools to humans for a long period of time. While except for entertainment, they can also trigger inspiration and enhance productivity in many other domains such as healthcare and general workplaces. The concept of the game is referred to a series of structured procedures (e.g., card games) and virtual programs. The entertainment artifacts could be a toy or even a handicraft, such as origami and kirigami, for entertainment purposes in a broader sense. Recently, the design of robots and relevant applications in robotics has been emerging in taking inspiration from Games and Entertainment Artifacts (GEA). However, there is a lack of systematic and general process for implementing a GEA-inspired design for developing robot-related applications. In this article, we put forward a design paradigm based on the inspiration of game and entertainment artifacts which is a systematic design approach. The design paradigm could follow two different processes which are driven by problems and solutions, respectively, using analogies of games and entertainment artifacts to build robotic solutions for solving real problems. The problem-driven process starts with an existing real-world problem, which follows the sequences of robotics problem search, robotics problem identification, GEA solution search, GEA solution identification, GEA principle extraction, and the principle implementation. Reversely, the solution-driven process follows the sequence of GEA solution search, GEA solution identification, GEA principle extraction, robotics problem search, robotics problem identification, and principle implementation. We demonstrate the application of the design paradigm using the case study of a new type of reconfigurable floor cleaning robot and its path planning algorithm

    Surveying the Energy Landscapes of Multistable Elastic Structures

    Get PDF
    Energy landscapes analysis is a versatile approach to study multistable systems by identifying the network of stable states and reconfiguration pathways. Thus far, it has primarily been used in microscale systems, such as studying chemical reaction rates and to characterise the behaviour of how protein fold. Here, however, we aim to utilise energy landscape techniques to study multistable elastic structures, in particular, complex 3D structures that have been buckled from 2D patterns, which are of interest for applications such as flexible electronics and microelectromechanical systems. To this end we have developed new energy landscape methods and software that are well suited to continuous, macroscale systems with many degrees of freedom. The first is the binary image transition state search method (BITSS), which offers greater efficiency for large scale systems compared to traditional transition state search methods, and it is well suited to complex, non-linear pathways. Next, a new software library is introduced that contains a variety of energy landscape methods and potentials which are parallelised to study large-scale continuous systems. This library can be flexibly used for any chosen application, and has been designed to be easily extensible for new methods and potentials. Furthermore, we exploit energy landscape analysis to tailor the stable states and reconfiguration paths of various reconfigurable buckled mesostructures. We establish stability phase diagrams and identify the corresponding available reconfiguration pathways by varying essential structural parameters. Furthermore, we identify how the introduction of creases affects the multistability of the structures, finding that a small number can increase the number of distinct states, but more creases can lead to a loss of multistability. Taken together, these results and methodology can be used to influence the design of new structures for a variety of different applications
    • …
    corecore