12 research outputs found

    From neural-based object recognition toward microelectronic eyes

    Get PDF
    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues

    Video Based Face Recognition Using Convolutional Neural Network

    Get PDF

    Enhanced parallel SOM based on heterogeneous system platform

    Get PDF
    In this paper, we propose an enhanced parallel Self organizing Map (SOM) framework based on heterogeneous system platform, specifically Central Processing Unit (CPU) and Graphic Processing Unit (GPU) soldered together on a single chip.The framework is to improve speed of parallel SOM using GPU since processing parallel SOM on GPU burden by communication latency due to isolate device architecture with CPU.The parallel SOM has been extended to heterogeneous system platform and double kernel for calculation distance and find Best Matching Unit (BMU) are introduced.The results are tested using benchmark data on two different platforms: GPU and heterogeneous system. The proposed framework shows improvement compared to standard parallel SOM on GPU and heterogeneous system

    Adaptive Sensor Optimization and Cognitive Image Processing Using Autonomous Optical Neuroprocessors

    Full text link

    Center for Space Microelectronics Technology. 1993 Technical Report

    Get PDF
    The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents. The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    An investigation into adaptive power reduction techniques for neural hardware

    No full text
    In light of the growing applicability of Artificial Neural Network (ANN) in the signal processing field [1] and the present thrust of the semiconductor industry towards lowpower SOCs for mobile devices [2], the power consumption of ANN hardware has become a very important implementation issue. Adaptability is a powerful and useful feature of neural networks. All current approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect to the power consumption of the network (i.e. power-reduction is not an objective of the adaptation/learning process). In the research work presented in this thesis, investigations on possible adaptive power reduction techniques have been carried out, which attempt to exploit the adaptability of neural networks in order to reduce the power consumption. Three separate approaches for such adaptive power reduction are proposed: adaptation of size, adaptation of network weights and adaptation of calculation precision. Initial case studies exhibit promising results with significantpower reduction

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    Get PDF
    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    De animais a máquinas : humanos tecnicamente melhores nos imaginários de futuro da convergência tecnológica

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Sociais, Departamento de Sociologia, 2020.O tema desta investigação é discutir os imaginários sociais de ciência e tecnologia que emergem a partir da área da neuroengenharia, em sua relação com a Convergência Tecnológica de quatro disciplinas: Nanotecnologia, Biotecnologia, tecnologias da Informação e tecnologias Cognitivas - neurociências- (CT-NBIC). Estas áreas desenvolvem-se e são articuladas por meio de discursos que ressaltam o aprimoramento das capacidades físicas e cognitivas dos seres humanos, com o intuito de construir uma sociedade melhor por meio do progresso científico e tecnológico, nos limites das agendas de pesquisa e desenvolvimento (P&D). Objetivos: Os objetivos nesse cenário, são discutir as implicações éticas, econômicas, políticas e sociais deste modelo de sistema sociotécnico. Nos referimos, tanto as aplicações tecnológicas, quanto as consequências das mesmas na formação dos imaginários sociais, que tipo de relações se estabelecem e como são criadas dentro desse contexto. Conclusão: Concluímos na busca por refletir criticamente sobre as propostas de aprimoramento humano mediado pela tecnologia, que surgem enquanto parte da agenda da Convergência Tecnológica NBIC. No entanto, as propostas de melhoramento humano vão muito além de uma agenda de investigação. Há todo um quadro de referências filosóficas e políticas que defendem o aprimoramento da espécie, vertentes estas que se aliam a movimentos trans-humanistas e pós- humanistas, posições que são ao mesmo tempo éticas, políticas e econômicas. A partir de nossa análise, entendemos que ciência, tecnologia e política estão articuladas, em coprodução, em relação às expectativas de futuros que são esperados ou desejados. Ainda assim, acreditamos que há um espaço de diálogo possível, a partir do qual buscamos abrir propostas para o debate público sobre questões de ciência e tecnologia relacionadas ao aprimoramento da espécie humana.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The subject of this research is to discuss the social imaginaries of science and technology that emerge from the area of neuroengineering in relation with the Technological Convergence of four disciplines: Nanotechnology, Biotechnology, Information technologies and Cognitive technologies -neurosciences- (CT-NBIC). These areas are developed and articulated through discourses that emphasize the enhancement of human physical and cognitive capacities, the intuition it is to build a better society, through the scientific and technological progress, at the limits of the research and development (R&D) agendas. Objectives: The objective in this scenery, is to discuss the ethic, economic, politic and social implications of this model of sociotechnical system. We refer about the technological applications and the consequences of them in the formation of social imaginaries as well as the kind of social relations that are created and established in this context. Conclusion: We conclude looking for critical reflections about the proposals of human enhancement mediated by the technology. That appear as a part of the NBIC technologies agenda. Even so, the proposals of human enhancement go beyond boundaries that an investigation agenda. There is a frame of philosophical and political references that defend the enhancement of the human beings. These currents that ally to the transhumanism and posthumanism movements, positions that are ethic, politic and economic at the same time. From our analysis, we understand that science, technology and politics are articulated, are in co-production, regarding the expected and desired futures. Even so, we believe that there is a space of possible dialog, from which we look to open proposals for the public discussion on questions of science and technology related to enhancement of human beings
    corecore