841 research outputs found

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    Design of a tunable multi-band differential LC VCO using 0.35 mu m SiGe BiCMOS technology for multi-standard wireless communication systems

    Get PDF
    In this paper, an integrated 2.2-5.7GHz multi-band differential LC VCO for multi-standard wireless communication systems was designed utilizing 0.35 mu m SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post-layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3 V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78 GHz, 3.22-3.53 GHz, 3.48-3.91 GHz and 4.528-5.7 GHz) with a maximum bandwidth of 1.36 GHz and a minimum bandwidth of 300 MHz. The designed and simulated VCO can generate a differential output power between 0.992 and -6.087 dBm with an average power consumption of 44.21 mW including the buffers. The average second and third harmonics level were obtained as -37.21 and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment. Output power of the fundamental frequency changes between -6.087 and 0.992 dBm, depending on the bias conditions (operating bands). Based on the post-layout simulation results, the core VCO circuit draws a current between 2.4-6.3 mA and between 11.4 and 15.3 mA with the buffer circuit from 3.3 V supply. The circuit occupies an area of 1.477 mm(2) on Si substrate, including DC, digital and RF pads

    A 5-Gb/s 66 dB CMOS variable-gain amplifier with reconfigurable DC-offset cancellation for multi-standard applications

    Get PDF
    This paper proposes a variable gain amplifier (VGA) with reconfigurable DC-offset cancellation (DCOC) for multi-standard applications. In this design, a cell-based design method and some bandwidth extension technologies are adopted to achieve a high data rate and a wide gain control range simultaneously. In addition, the DCOC having a tunable lower-cutoff frequency can make an optimum compromise between BER and SNR according to the specified baseband standard. The measurements show that the VGA achieves a gain control range from −6 dB to 60 dB, a bandwidth beyond 3 GHz, and a tunable lower-cutoff frequency from 0 to 300 kHz. When entering a 2 23 −1 pseudo-random bit sequence signal at 5 Gb/s, the VGA consumes 17 mW from a 1.2-V supply and the output data peak-to-peak jitter is less than 40 ps. The VGA is fabricated in a 90-nm CMOS process with a chip size (including all pads) of 0.52×0.5 mm 2

    Analysis of Impact of Transformer Coupled Input Matching on Concurrent Dual-Band Low Noise Amplifier

    Get PDF
    Emerging advancements in telecommunication system need robust radio devices which can capable of working multiple frequency bands seamlessly. In any Radio Frequency (RF) receiver architecture, Low Noise Amplifier (LNA) is the mandatory front-end part in which takes place in between antenna and mixer. To support multiple frequency bands with single hardware, concurrent LNA is the more preferred topologies among others. As LNA is the very front end level of receiver, Input matching, Noise Figure (NF) and gain are the major performance parameters to be concerned. In this work, the impact of transformer coupled input matching on concurrent dual-band LNA is analyzed and verified. A concurrent LNA with concurrent matching without transformer coupling is used for comparison. A transformer coupled input matching is proposed for tunable concurrent dual-band LNA. All the circuits are implemented in UMC 180nm CMOS technology, and simulated using Cadence SpectreRF simulation tool

    Analysis and Design of Wideband Low Noise Amplifier with Digital Control

    Get PDF
    The design issues in designing low noise amplifier (LNA) for Software-Defined-Radio (SDR) are reviewed. An inductor-less wideband low noise amplifier aiming at low frequency band (0.2-2GHz) for Software-Defined-Radio is presented. Shunt-shunt LNA with active feedback is used as the first stage which is carefully optimized for low noise and wide band applications. A digitally controlled second stage is employed to provide an additional 12dB gain control. A novel method is proposed to bypass the first stage without degrading input matching. This LNA is fabricated in a standard 0.18 um CMOS technology. The measurement result shows the proposed LNA has a gain range of 6dB-18dB at high gain mode and -12dB-0dB at low gain mode, as well as a –3dB bandwidth of 2GHz. The noise figure (NF) is 3.5-4.5dB in the high gain setting mode. It consumes 20mW from a 1.8V supply

    Towards a Universal Multi-Standard RF Receiver

    Get PDF
    Future wireless communication market calls for the need of an extreme compact wireless device that can easily access to all the available services at any time and at any location with minimum power consumption and cost. The key is to find a multi-standard wireless receiver that can cover all the service specifications while keeping redundant components to minimum. Reconfigurable concept is right fit the need. In this thesis, a fully integrated universal multi-standard receiver using low-cost CMOS technology has been proposed based on the survey for different wireless receiver specifications and optimum architectures. Tunable receiver building blocks such as filters, LNAs, Mixers, VCOs, gain blocks are the main factor to approach this novel receiver. In order to realize frequency agility, low cost as well as low power consumption, a good switch is a must. In this thesis, MEMS switches are preferred rather than active switches or active tuning elements based on their performance comparisons. In the feasibility study, as an example, first, a reconfigurable LNA and a reconfigurable oscillator using hard wires as switches have been developed, and then a LNA and an oscillator have been designed using a MEMS switch. The effect of hard-wire connection and MEMS to the circuits has been evaluated. No performance degradation has been found when using hard-wire connections, while some has been observed when using MEMS. However, MEMS could be integrated with other circuits on the same die if it could be built on low resistive silicon substrate without performance degradation

    Mask Programmable CMOS Transistor Arrays for Wideband RF Integrated Circuits

    Get PDF
    A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4-22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79-96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 mum ) dielectric layer that enables very low loss lines (~0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time

    Current reuse topology in UWB CMOS LNA

    Get PDF
    Non
    corecore