242 research outputs found

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    Enabling Dynamic Spectrum Allocation in Cognitive Radio Networks

    Get PDF
    The last decade has witnessed the proliferation of innovative wireless technologies, such asWi-Fi, wireless mesh networks, operating in unlicensed bands. Due to the increasing popularity and the wide deployments of these technologies, the unlicensed bands become overcrowded. The wireless devices operating in these bands interfere with each other and hurt the overall performance. To support fast growths of wireless technologies, more spectrums are required. However, as most "prime" spectrum has been allocated, there is no spectrum available to expand these innovative wireless services. Despite the general perception that there is an actual spectral shortage, the recent measurement results released by the FCC (Federal Communications Commission) show that on average only 5% of the spectrum from 30MHz to 30 GHz is used in the US. This indicates that the inefficient spectrum usage is the root cause of the spectral shortage problem. Therefore, this dissertation is focused on improving spectrum utilization and efficiency in tackling the spectral shortage problem to support ever-growing user demands for wireless applications. This dissertation proposes a novel concept of dynamic spectrum allocation, which adaptively divides available spectrum into non-overlapping frequency segments of different bandwidth considering the number of potentially interfering transmissions and the distribution of traffic load in a local environment. The goals are (1) to maximize spectrum efficiency by increasing parallel transmissions and reducing co-channel interferences, and (2) to improve fairness across a network by balancing spectrum assignments. Since existing radio systems offer very limited flexibility, cognitive radios, which can sense and adapt to radio environments, are exploited to support such a dynamic concept. We explore two directions to improve spectrum efficiency by adopting the proposed dynamic allocation concept. First, we build a cognitive wireless system called KNOWS to exploit unoccupied frequencies in the licensed TV bands. KNOWS is a hardware-software platform that includes new radio hardware, a spectrum-aware MAC (medium access control) protocol and an algorithm for implementing the dynamic spectrum allocation. We show that KNOWS accomplishes a remarkable 200% throughput gain over systems based on fixed allocations in common cases. Second, we enhance Wireless LANs (WLANs), the most popular network setting in unlicensed bands, by proposing a dynamic channelization structure and a scalable MAC design. Through analysis and extensive simulations, we show that the new channelization structure and the scalable MAC design improve not only network capacity but per-client fairness by allocating channels of variable width for access points in a WLAN. As a conclusion, we believe that our proposed concept of dynamic spectrum allocation lays down a solid foundation for building systems to efficiently use the invaluable spectrum resource

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Content aware services using edge to edge overlays

    Get PDF
    Issued as final reportMotorola, inc

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components
    • …
    corecore