57 research outputs found

    Channelization for Multi-Standard Software-Defined Radio Base Stations

    Get PDF
    As the number of radio standards increase and spectrum resources come under more pressure, it becomes ever less efficient to reserve bands of spectrum for exclusive use by a single radio standard. Therefore, this work focuses on channelization structures compatible with spectrum sharing among multiple wireless standards and dynamic spectrum allocation in particular. A channelizer extracts independent communication channels from a wideband signal, and is one of the most computationally expensive components in a communications receiver. This work specifically focuses on non-uniform channelizers suitable for multi-standard Software-Defined Radio (SDR) base stations in general and public mobile radio base stations in particular. A comprehensive evaluation of non-uniform channelizers (existing and developed during the course of this work) shows that parallel and recombined variants of the Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB) represent the best trade-off between computational load and flexibility for dynamic spectrum allocation. Nevertheless, for base station applications (with many channels) very high filter orders may be required, making the channelizers difficult to physically implement. To mitigate this problem, multi-stage filtering techniques are applied to the GDFT-FB. It is shown that these multi-stage designs can significantly reduce the filter orders and number of operations required by the GDFT-FB. An alternative approach, applying frequency response masking techniques to the GDFT-FB prototype filter design, leads to even bigger reductions in the number of coefficients, but computational load is only reduced for oversampled configurations and then not as much as for the multi-stage designs. Both techniques render the implementation of GDFT-FB based non-uniform channelizers more practical. Finally, channelization solutions for some real-world spectrum sharing use cases are developed before some final physical implementation issues are considered

    Efficient Channelization for PMR+4G and GSM Re-Farming Base Stations

    Full text link

    Efficient Channelization for PMR+4G and GSM Re-Farming Base Stations

    Get PDF
    Current trends in mobile communications look for a better usage of the frequency spectrum by diverging from the classic frequency bands division for each standard. Instead, sharing a same frequency band by several mobile standards has been motivated by several factors: under-utilisation of some frequency bands, better electromagnetic propagation properties and provision of new capabilities to existing standards. This new way to manage the electromagnetic spectrum has an influence in the devices which form the mobile radio interface: base stations and mobiles stations. In particular for base stations, channelization represents an important challenge. In this paper efficient channelization techniques are proposed as a practical solution for real world professional and commercial mobile communication cases where frequency bands are shared. Depending on each case, the most optimal solution is based on the application of one of these channelization techniques, or a combination of several of them

    A New Low Complexity Uniform Filter Bank Based on the Improved Coefficient Decimation Method

    Get PDF
    In this paper, we propose a new uniform filter bank (FB) based on the improved coefficient decimation method (ICDM). In the proposed FB’s design, the ICDM is used to obtain different multi-band frequency responses using a single lowpass prototype filter. The desired subbands are individually obtained from these multi-band frequency responses by using low order frequency response masking filters and their corresponding ICDM output frequency responses. We show that the proposed FB is a very low complexity alternative to the other FBs in literature, especially the widely used discrete Fourier transform based FB (DFTFB) and the CDM based FB (CDFB). The proposed FB can have a higher number of subbands with twice the center frequency resolution when compared with the CDFB and DFTFB. Design example and implementation results show that our FB achieves 86.59% and 58.84% reductions in resource utilizations and 76.95% and 47.09% reductions in power consumptions when compared with the DFTFB and CDFB respectively

    Practical Non-Uniform Channelization for Multistandard Base Stations

    Get PDF
    A Multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation

    Practical Non-Uniform Channelization for Multistandard Base Stations

    Get PDF
    A Multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation

    Efficient Multi-Standard Software Defined Radio receivers implementation using Frequency response masking Naveena P and Nithya S

    Get PDF
    The compatibility of the filter bank with different communication standards requires dynamic reconfigurability. The polyphase channelizer has the advantage that the channel filter can be adjusted to better approximate the ideal magnitude response.Hanning Window functions can also be used to improve the side lobe response without any of the performance penalties associated with the FFT channelizer. The proposed FB offers reconfigurability at the architectural level and at the channel filter level and is capable of extracting channels of nonuniform bandwidths corresponding to multiple wireless communication standard from the digitized wideband input signal

    Non-Uniform Channelization Methods for Next Generation SDR PMR Base Stations

    Get PDF
    Channelization in multi-standard Software-Defined Radio base stations presents a significant challenge. In this paper, two different channelization structures designed for a multi-standard SDR base station are studied. As a basis for comparing their computational efficiency and reconfigurability, both are applied to a specific case study of a TETRA and TEDS standards base station. Uniform narrow band spectrum division followed by channel recombination demonstrates greater flexibility than a non-uniform parallel spectrum division alternative. However, computational advantages between both structures depend on the channel allocation patterns considered
    corecore