4 research outputs found

    Fractionally Spaced Complex Sub-Nyquist Sampling for Multi-Gigabit 60 GHz Wireless Communication

    Get PDF
    A novel analog front-end architecture based on complex sub-Nyquist sampling for the intermediate frequency (IF) stage of a mmWave receiver is proposed. With this front-end, the use of a wideband hybrid coupler and two half-rate analog-to-digital converters (ADCs) allow for a flexible placement of the IF. It is shown that digital compensation of the impairments introduced by the non-ideal 90 degree hybrid coupler is required to use high modulation orders. Further a digital signal processing (DSP) architecture is presented which performs equalization of a fractionally spaced sub-sampled IF signal in frequency domain (FD) and integrates the compensation of the impairments with low overhead. Based on this DSP architecture a working 60GHz single-carrier link is demonstrated. Measurement results show the feasibility of 256QAM modulated transmission with a bandwidth of up to 1.8 GHz and a resulting raw data rate of 12.8 Gb/s using our frontend architecture with the digital FD compensation

    Optical frequency comb technology for ultra-broadband radio-frequency photonics

    Full text link
    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.Comment: to appear in Laser and Photonics Review

    Design and Implementation of HD Wireless Video Transmission System Based on Millimeter Wave

    Get PDF
    With the improvement of optical fiber communication network construction and the improvement of camera technology, the video that the terminal can receive becomes clearer, with resolution up to 4K. Although optical fiber communication has high bandwidth and fast transmission speed, it is not the best solution for indoor short-distance video transmission in terms of cost, laying difficulty and speed. In this context, this thesis proposes to design and implement a multi-channel wireless HD video transmission system with high transmission performance by using the 60GHz millimeter wave technology, aiming to improve the bandwidth from optical nodes to wireless terminals and improve the quality of video transmission. This thesis mainly covers the following parts: (1) This thesis implements wireless video transmission algorithm, which is divided into wireless transmission algorithm and video transmission algorithm, such as 64QAM modulation and demodulation algorithm, H.264 video algorithm and YUV420P algorithm. (2) This thesis designs the hardware of wireless HD video transmission system, including network processing unit (NPU) and millimeter wave module. Millimeter wave module uses RWM6050 baseband chip and TRX-BF01 rf chip. This thesis will design the corresponding hardware circuit based on the above chip, such as 10Gb/s network port, PCIE. (3) This thesis realizes the software design of wireless HD video transmission system, selects FFmpeg and Nginx to build the sending platform of video transmission system on NPU, and realizes video multiplex transmission with Docker. On the receiving platform of video transmission, FFmpeg and Qt are selected to realize video decoding, and OpenGL is combined to realize video playback. (4) Finally, the thesis completed the wireless HD video transmission system test, including pressure test, Web test and application scenario test. It has been verified that its HD video wireless transmission system can transmit HD VR video with three-channel bit rate of 1.2GB /s, and its rate can reach up to 3.7GB /s, which meets the research goal

    Design of advanced benchmarks and analytical methods for RF-based indoor localization solutions

    Get PDF
    corecore