18 research outputs found

    Parallelization of SAT on Reconfigurable Hardware

    Full text link
    Quoique très difficile à résoudre, le problème de satisfiabilité Booléenne (SAT) est fréquemment utilisé lors de la modélisation d’applications industrielles. À cet effet, les deux dernières décennies ont vu une progression fulgurante des outils conçus pour trouver des solutions à ce problème NP-complet. Deux grandes avenues générales ont été explorées afin de produire ces outils, notamment l’approche logicielle et matérielle. Afin de raffiner et améliorer ces solveurs, de nombreuses techniques et heuristiques ont été proposées par la communauté de recherche. Le but final de ces outils a été de résoudre des problèmes de taille industrielle, ce qui a été plus ou moins accompli par les solveurs de nature logicielle. Initialement, le but de l’utilisation du matériel reconfigurable a été de produire des solveurs pouvant trouver des solutions plus rapidement que leurs homologues logiciels. Cependant, le niveau de sophistication de ces derniers a augmenté de telle manière qu’ils restent le meilleur choix pour résoudre SAT. Toutefois, les solveurs modernes logiciels n’arrivent toujours pas a trouver des solutions de manière efficace à certaines instances SAT. Le but principal de ce mémoire est d’explorer la résolution du problème SAT dans le contexte du matériel reconfigurable en vue de caractériser les ingrédients nécessaires d’un solveur SAT efficace qui puise sa puissance de calcul dans le parallélisme conféré par une plateforme FPGA. Le prototype parallèle implémenté dans ce travail est capable de se mesurer, en termes de vitesse d’exécution à d’autres solveurs (matériels et logiciels), et ce sans utiliser aucune heuristique. Nous montrons donc que notre approche matérielle présente une option prometteuse vers la résolution d’instances industrielles larges qui sont difficilement abordées par une approche logicielle.Though very difficult to solve, the Boolean satisfiability problem (SAT) is extensively used to model various real-world applications and problems. Over the past two decades, researchers have tried to provide tools that are used, to a certain degree, to find solutions to the Boolean satisfiability problem. The nature of these tools is broadly divided in software and reconfigurable hardware solvers. In addition, the main algorithms used to solve this problem have also been complemented with heuristics of various levels of sophistication to help overcome some of the NP-hardness of the problem. The end goal of these tools has been to provide solutions to industrial-sized problems of enormous size. Initially, reconfigurable hardware tools provided a promising avenue to accelerating SAT solving over traditional software based solutions. However, the level of sophistication of software solvers overcame their hardware counterparts, which remained limited to smaller problem instances. Even so, modern state-of-the-art software solvers still fail unpredictably on some instances. The main focus of this thesis is to explore solving SAT on reconfigurable hardware in order to gain an understanding of what would be essential ingredients to add (and discard) to a very efficient hardware SAT solver that obtains its processing power from the raw parallelism of an FPGA platform. The parallel prototype solver that was implemented in this work has been found to be comparable with other hardware and software solvers in terms of execution speed even though no heuristics or other helping techniques were implemented. We thus show that our approach provides a very promising avenue to solving large, industrial SAT instances that might be difficult to handle by software solvers

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    A reconfigurable, pipelined, conflict directed jumping search SAT solver

    No full text

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Modèles de calculs flot de données avec paramètres entiers et booléens. Modélisation - Analyses - Mise en oeuvre

    Get PDF
    Streaming applications are responsible for the majority of the computation load in many embedded systems (video conferencing, computer vision etc). Their high performance requirements make parallel implementations a necessity. Hence, more and more modern embedded systems include many-core processors that allow massive parallelism. Parallel implementation of streaming applications on many-core platforms is challenging because of their complexity, which tends to increase, and their strict requirements both qualitative (e.g., robustness, reliability) and quantitative (e.g., throughput, power consumption). This is observed in the evolution of video codecs that keep increasing in complexity, while their performance requirements remain the same or even increase. Data flow models of computation (MoCs) have been developed to facilitate the design process of such applications, which are typically composed of filters exchanging streams of data via communication links. Data flow MoCs provide an intuitive representation of streaming applications, while exposing the available parallelism of the application. Moreover, they provide static analyses for liveness and boundedness. However, modern streaming applications feature filters that exchange variable amounts of data, and communication links that are not always active. In this thesis, we present a new data flow MoC, the Boolean Parametric Data Flow (BPDF), that allows parametrization of the amount of data exchanged between the filters using integer parameters and the enabling and disabling of communication links using boolean parameters. In this way, BPDF is able to capture more complex streaming applications, like video decoders. Despite the increase in expressiveness, BPDF applications remain statically analyzable for liveness and boundedness. However, increased expressiveness greatly complicates implementation. Integer parameters result in parametric data dependencies and the boolean parameters disable communication links, effectively removing data dependencies. We propose a scheduling framework that facilitates the scheduling of BPDF applications. Our scheduling framework produces as soon as possible schedules for a given static mapping. It takes us input scheduling constraints that derive either from the application (data dependencies) or from the user (schedule optimizations). The constraints are analyzed for liveness and, if possible, simplified. In this way, our framework provides flexibility, while guaranteeing the liveness of the application. Finally, calculation of the throughput of an application is important both at compile-time and at run-time. It allows to verify at compile-time that the application meets its performance requirements and it allows to take scheduling decisions at run-time that can improve performance or power consumption. We approach this problem by finding parametric throughput expressions for the maximum throughput of a subset of BPDF graphs. Finally, we provide an algorithm that calculates sufficient buffer sizes for the BPDF graph to operate at maximum throughput.Les applications de gestion de flux sont responsables de la majorité des calculs des systèmes embarqués (vidéo conférence, vision par ordinateur). Leurs exigences de haute performance rendent leur mise en œuvre parallèle nécessaire. Par conséquent, il est de plus en plus courant que les systèmes embarqués modernes incluent des processeurs multi-cœurs qui permettent un parallélisme massif. La mise en œuvre des applications de gestion de flux sur des multi-cœurs est difficile à cause de leur complexité, qui tend à augmenter, et de leurs exigences strictes à la fois qualitatives (robustesse, fiabilité) et quantitatives (débit, consommation d'énergie). Ceci est observé dans l'évolution de codecs vidéo qui ne cessent d'augmenter en complexité, tandis que leurs exigences de performance demeurent les mêmes. Les modèles de calcul (MdC) flot de données ont été développés pour faciliter la conception de ces applications qui sont typiquement composées de filtres qui échangent des flux de données via des liens de communication. Ces modèles fournissent une représentation intuitive des applications de gestion de flux, tout en exposant le parallélisme de tâches de l'application. En outre, ils fournissent des analyses statiques pour la vivacité et l'exécution en mémoire bornée. Cependant, les applications de gestion de flux modernes comportent des filtres qui échangent des quantités de données variables, et des liens de communication qui peuvent être activés / désactivés. Dans cette thèse, nous présentons un nouveau MdC flot de données, le Boolean Parametric Data Flow (BPDF), qui permet le paramétrage de la quantité de données échangées entre les filtres en utilisant des paramètres entiers et l'activation et la désactivation de liens de communication en utilisant des paramètres booléens. De cette manière, BPDF est capable de exprimer des applications plus complexes, comme les décodeurs vidéo modernes. Malgré l'augmentation de l'expressivité, les applications BPDF restent statiquement analysables pour la vivacité et l'exécution en mémoire bornée. Cependant, l'expressivité accrue complique grandement la mise en œuvre. Les paramètres entiers entraînent des dépendances de données de type paramétrique et les paramètres booléens peuvent désactiver des liens de communication et ainsi éliminer des dépendances de données. Pour cette raison, nous proposons un cadre d'ordonnancement qui produit des ordonnancements de type ``aussi tôt que possible'' (ASAP) pour un placement statique donné. Il utilise des contraintes d'ordonnancement, soit issues de l'application (dépendance de données) ou de l'utilisateur (optimisations d'ordonnancement). Les contraintes sont analysées pour la vivacité et, si possible, simplifiées. De cette façon, notre cadre permet une grande variété de politiques d'ordonnancement, tout en garantissant la vivacité de l'application. Enfin, le calcul du débit d'une application est important tant avant que pendant l'exécution. Il permet de vérifier que l'application satisfait ses exigences de performance et il permet de prendre des décisions d'ordonnancement à l'exécution qui peuvent améliorer la performance ou la consommation d'énergie. Nous traitons ce problème en trouvant des expressions paramétriques pour le débit maximum d'un sous-ensemble de BPDF. Enfin, nous proposons un algorithme qui calcule une taille des buffers suffisante pour que l'application BPDF ait un débit maximum

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore