50 research outputs found

    Swarm intelligence for clustering dynamic data sets for web usage mining and personalization.

    Get PDF
    Swarm Intelligence (SI) techniques were inspired by bee swarms, ant colonies, and most recently, bird flocks. Flock-based Swarm Intelligence (FSI) has several unique features, namely decentralized control, collaborative learning, high exploration ability, and inspiration from dynamic social behavior. Thus FSI offers a natural choice for modeling dynamic social data and solving problems in such domains. One particular case of dynamic social data is online/web usage data which is rich in information about user activities, interests and choices. This natural analogy between SI and social behavior is the main motivation for the topic of investigation in this dissertation, with a focus on Flock based systems which have not been well investigated for this purpose. More specifically, we investigate the use of flock-based SI to solve two related and challenging problems by developing algorithms that form critical building blocks of intelligent personalized websites, namely, (i) providing a better understanding of the online users and their activities or interests, for example using clustering techniques that can discover the groups that are hidden within the data; and (ii) reducing information overload by providing guidance to the users on websites and services, typically by using web personalization techniques, such as recommender systems. Recommender systems aim to recommend items that will be potentially liked by a user. To support a better understanding of the online user activities, we developed clustering algorithms that address two challenges of mining online usage data: the need for scalability to large data and the need to adapt cluster sing to dynamic data sets. To address the scalability challenge, we developed new clustering algorithms using a hybridization of traditional Flock-based clustering with faster K-Means based partitional clustering algorithms. We tested our algorithms on synthetic data, real VCI Machine Learning repository benchmark data, and a data set consisting of real Web user sessions. Having linear complexity with respect to the number of data records, the resulting algorithms are considerably faster than traditional Flock-based clustering (which has quadratic complexity). Moreover, our experiments demonstrate that scalability was gained without sacrificing quality. To address the challenge of adapting to dynamic data, we developed a dynamic clustering algorithm that can handle the following dynamic properties of online usage data: (1) New data records can be added at any time (example: a new user is added on the site); (2) Existing data records can be removed at any time. For example, an existing user of the site, who no longer subscribes to a service, or who is terminated because of violating policies; (3) New parts of existing records can arrive at any time or old parts of the existing data record can change. The user\u27s record can change as a result of additional activity such as purchasing new products, returning a product, rating new products, or modifying the existing rating of a product. We tested our dynamic clustering algorithm on synthetic dynamic data, and on a data set consisting of real online user ratings for movies. Our algorithm was shown to handle the dynamic nature of data without sacrificing quality compared to a traditional Flock-based clustering algorithm that is re-run from scratch with each change in the data. To support reducing online information overload, we developed a Flock-based recommender system to predict the interests of users, in particular focusing on collaborative filtering or social recommender systems. Our Flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents, such that each agent represents a user, on a visualization panel. Then it generates the top-n recommendations for a user based on the ratings of the users that are represented by its neighboring agents. Our recommendation system was tested on a real data set consisting of online user ratings for a set of jokes, and compared to traditional user-based Collaborative Filtering (CF). Our results demonstrated that our recommender system starts performing at the same level of quality as traditional CF, and then, with more iterations for exploration, surpasses CF\u27s recommendation quality, in terms of precision and recall. Another unique advantage of our recommendation system compared to traditional CF is its ability to generate more variety or diversity in the set of recommended items. Our contributions advance the state of the art in Flock-based 81 for clustering and making predictions in dynamic Web usage data, and therefore have an impact on improving the quality of online services

    A Nonlinear PID-Enhanced Adaptive Latent Factor Analysis Model

    Full text link
    High-dimensional and incomplete (HDI) data holds tremendous interactive information in various industrial applications. A latent factor (LF) model is remarkably effective in extracting valuable information from HDI data with stochastic gradient decent (SGD) algorithm. However, an SGD-based LFA model suffers from slow convergence since it only considers the current learning error. To address this critical issue, this paper proposes a Nonlinear PID-enhanced Adaptive Latent Factor (NPALF) model with two-fold ideas: 1) rebuilding the learning error via considering the past learning errors following the principle of a nonlinear PID controller; b) implementing all parameters adaptation effectively following the principle of a particle swarm optimization (PSO) algorithm. Experience results on four representative HDI datasets indicate that compared with five state-of-the-art LFA models, the NPALF model achieves better convergence rate and prediction accuracy for missing data of an HDI data

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    A framework for manufacturing system reconfiguration and optimisation utilising digital twins and modular artificial intelligence

    Get PDF
    Digital twins and artificial intelligence have shown promise for improving the robustness, responsiveness, and productivity of industrial systems. However, traditional digital twin approaches are often only employed to augment single, static systems to optimise a particular process. This article presents a paradigm for combining digital twins and modular artificial intelligence algorithms to dynamically reconfigure manufacturing systems, including the layout, process parameters, and operation times of numerous assets to allow system decision-making in response to changing customer or market needs. A knowledge graph has been used as the enabler for this system-level decision-making. A simulation environment has been constructed to replicate the manufacturing process, with the example here of an industrial robotic manufacturing cell. The simulation environment is connected to a data pipeline and an application programming interface to assist the integration of multiple artificial intelligence methods. These methods are used to improve system decision-making and optimise the configuration of a manufacturing system to maximise user-selectable key performance indicators. In contrast to previous research, this framework incorporates artificial intelligence for decision-making and production line optimisation to provide a framework that can be used for a wide variety of manufacturing applications. The framework has been applied and validated in a real use case, with the automatic reconfiguration resulting in a process time improvement of approximately 10%

    Latitude, longitude, and beyond:mining mobile objects' behavior

    Get PDF
    Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless communications, have resulted in a surge in data generation. Mobility data is one of the various forms of data, which are ubiquitously collected by different location sensing devices. Extensive knowledge about the behavior of humans and wildlife is buried in raw mobility data. This knowledge can be used for realizing numerous viable applications ranging from wildlife movement analysis, to various location-based recommendation systems, urban planning, and disaster relief. With respect to what mentioned above, in this thesis, we mainly focus on providing data analytics for understanding the behavior and interaction of mobile entities (humans and animals). To this end, the main research question to be addressed is: How can behaviors and interactions of mobile entities be determined from mobility data acquired by (mobile) wireless sensor nodes in an accurate and efficient manner? To answer the above-mentioned question, both application requirements and technological constraints are considered in this thesis. On the one hand, applications requirements call for accurate data analytics to uncover hidden information about individual behavior and social interaction of mobile entities, and to deal with the uncertainties in mobility data. Technological constraints, on the other hand, require these data analytics to be efficient in terms of their energy consumption and to have low memory footprint, and processing complexity

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Collective intelligence: creating a prosperous world at peace

    Get PDF
    XXXII, 612 p. ; 24 cmLibro ElectrónicoEn este documento se plantea un tema de interes general mas como lo es especificamente el tema de la evolucion de la sociedad en materia de industria y crecimiento de las actividades humanas en el aspecto de desarrollo de la creatividad enfocada a los mercadosedited by Mark Tovey ; foreword by Yochai Benkler (re-mixed by Hassan Masum) ; prefaces by Thomas Malone, Tom Atlee & Pierre Levy ; afterword by Paul Martin & Thomas Homer-Dixon.The era of collective intelligence has begun in earnest. While others have written about the wisdom of crowds, an army of Davids, and smart mobs, this collection of essays for the first time brings together fifty-five pioneers in the emerging discipline of collective intelligence. They provide a base of tools for connecting people, producing high-functioning teams, collaborating at multiple scales, and encouraging effective peer-production. Emerging models are explored for digital deliberative democracy, self-governance, legislative transparency, true-cost accounting, and the ethical use of open sources and methods. Collective Intelligence is the first of a series of six books, which will also include volumes on Peace Intelligence, Commercial Intelligence, Gift Intelligence, Cultural Intelligence, and Global Intelligence.Table of Contents Dedication i Publisher’s Preface iii Foreword by Yochai Benkler Remix Hassan Masum xi The Wealth of Networks: Highlights remixed Editor’s Preface xxi Table of Contents xxv A What is collective intelligence and what will we do 1 about it? (Thomas W. Malone, MIT Center for Collective Intelligence) B Co-Intelligence, collective intelligence, and conscious 5 evolution (Tom Atlee, Co-Intelligence Institute) C A metalanguage for computer augmented collective 15 intelligence (Prof. Pierre Lévy, Canada Research Chair in Collective Intelligence, FRSC) I INDIVIDUALS & GROUPS I-01 Foresight I-01-01 Safety Glass (Karl Schroeder, science fiction author 23 and foresight consultant) I-01-02 2007 State of the Future (Jerome C. Glenn & 29 Theodore J. Gordon, United Nations Millennium Project) I-02 Dialogue & Deliberation I-02-01 Thinking together without ego: Collective intelligence 39 as an evolutionary catalyst (Craig Hamilton and Claire Zammit, Collective-Intelligence.US) I-02-02 The World Café: Awakening collective intelligence 47 and committed action (Juanita Brown, David Isaacs and the World Café Community) I-02-03 Collective intelligence and the emergence of 55 wholeness (Peggy Holman, Nexus for Change, The Change Handbook) I-02-04 Knowledge creation in collective intelligence (Bruce 65 LaDuke, Fortune 500, HyperAdvance.com) I-02-05 The Circle Organization: Structuring for collective 75 wisdom (Jim Rough, Dynamic Facilitation & The Center for Wise Democracy) I-03 Civic Intelligence I-03-01 Civic intelligence and the public sphere (Douglas 83 Schuler, Evergreen State College, Public Sphere Project) I-03-02 Civic intelligence and the security of the homeland 95 (John Kesler with Carole and David Schwinn, IngeniusOnline) I-03-03 Creating a Smart Nation (Robert Steele, OSS.Net) 107 I-03-04 University 2.0: Informing our collective intelligence 131 (Nancy Glock-Grueneich, HIGHEREdge.org) I-03-05 Producing communities of communications and 145 foreknowledge (Jason “JZ” Liszkiewicz, Reconfigure.org) I-03-06 Global Vitality Report 2025: Learning to transform I-04 Electronic Communities & Distributed Cognition I-04-01 Attentional capital and the ecology of online social 163 conflict and think together effectively (Peter+Trudy networks (Derek Lomas, Social Movement Lab, Johnson-Lenz, Johnson-Lenz.com ) UCSD) I-04-02 A slice of life in my virtual community (Howard 173 Rheingold, Whole Earth Review, Author & Educator) I-04-03 Shared imagination (Dr. Douglas C. Engelbart, 197 Bootstrap) I-05 Privacy & Openness I-05-01 We’re all swimming in media: End-users must be able 201 to keep secrets (Mitch Ratcliffe, BuzzLogic & Tetriad) I-05-02 Working openly (Lion Kimbro, Programmer and 205 Activist) I-06 Integral Approaches & Global Contexts I-06-01 Meta-intelligence for analyses, decisions, policy, and 213 action: The Integral Process for working on complex issues (Sara Nora Ross, Ph.D. ARINA & Integral Review) I-06-02 Collective intelligence: From pyramidal to global 225 (Jean-Francois Noubel, The Transitioner) I-06-03 Cultivating collective intelligence: A core leadership 235 competence in a complex world (George Pór, Fellow at Universiteit van Amsterdam) II LARGE-SCALE COLLABORATION II-01 Altruism, Group IQ, and Adaptation II-01-01 Empowering individuals towards collective online 245 production (Keith Hopper, KeithHopper.com) II-01-02 Who’s smarter: chimps, baboons or bacteria? The 251 power of Group IQ (Howard Bloom, author) II-01-03 A collectively generated model of the world (Marko 261 A. Rodriguez, Los Alamos National Laboratory) II-02 Crowd Wisdom and Cognitive Bias II-02-01 Science of CI: Resources for change (Norman L 265 Johnson, Chief Scientist at Referentia Systems, former LANL) II-02-02 Collectively intelligent systems (Jennifer H. Watkins, 275 Los Alamos National Laboratory) II-02-03 A contrarian view (Jaron Lanier, scholar-in-residence, 279 CET, UC Berkeley & Discover Magazine) II-03 Semantic Structures & The Semantic Web II-03-01 Information Economy Meta Language (Interview with 283 Professor Pierre Lévy, by George Pór) II-03-02 Harnessing the collective intelligence of the World- 293 Wide Web (Nova Spivack, RadarNetworks, Web 3.0) II-03-03 The emergence of a global brain (Francis Heylighen, 305 Free University of Brussels) II-04 Information Networks II-04-01 Networking and mobilizing collective intelligence (G. Parker Rossman, Future of Learning Pioneer) II-04-02 Toward high-performance organizations: A strategic 333 role for Groupware (Douglas C. Engelbart, Bootstrap) II-04-03 Search panacea or ploy: Can collective intelligence 375 improve findability? (Stephen E. Arnold, Arnold IT, Inc.) II-05 Global Games, Local Economies, & WISER II-05-01 World Brain as EarthGame (Robert Steele and many 389 others, Earth Intelligence Network) II-05-02 The Interra Project (Jon Ramer and many others) 399 II-05-03 From corporate responsibility to Backstory 409 Management (Alex Steffen, Executive Editor, Worldchanging.com) II-05-04 World Index of Environmental & Social 413 Responsibility (WISER) By the Natural Capital Institute II-06 Peer-Production & Open Source Hardware II-06-01 The Makers’ Bill of Rights (Jalopy, Torrone, and Hill) 421 II-06-02 3D Printing and open source design (James Duncan, 423 VP of Technology at Marketingisland) II-06-03 REBEARTHTM: 425 II-07 Free Wireless, Open Spectrum, and Peer-to-Peer II-07-01 Montréal Community Wi-Fi (Île Sans Fil) (Interview 433 with Michael Lenczner by Mark Tovey) II-07-02 The power of the peer-to-peer future (Jock Gill, 441 Founder, Penfield Gill Inc.) Growing a world 6.6 billion people would want to live in (Marc Stamos, B-Comm, LL.B) II-07-03 Open spectrum (David Weinberger) II-08 Mass Collaboration & Large-Scale Argumentation II-08-01 Mass collaboration, open source, and social 455 entrepreneurship (Mark Tovey, Advanced Cognitive Engineering Lab, Institute of Cognitive Science, Carleton University) II-08-02 Interview with Thomas Homer-Dixon (Hassan 467 Masum, McLaughlin-Rotman Center for Global Health) II-08-03 Achieving collective intelligence via large-scale argumentation (Mark Klein, MIT Center for Collective Intelligence) II-08-04 Scaling up open problem solving (Hassan Masum & 485 Mark Tovey) D Afterword: The Internet and the revitalization of 495 democracy (The Rt. Honourable Paul Martin & Thomas Homer-Dixon) E Epilogue by Tom Atlee 513 F Three Lists 515 1. Strategic Reading Categories 2. Synopsis of the New Progressives 3. Fifty-Two Questions that Matter G Glossary 519 H Index 52
    corecore