19,997 research outputs found

    Artificial Intelligence and Patient-Centered Decision-Making

    Get PDF
    Advanced AI systems are rapidly making their way into medical research and practice, and, arguably, it is only a matter of time before they will surpass human practitioners in terms of accuracy, reliability, and knowledge. If this is true, practitioners will have a prima facie epistemic and professional obligation to align their medical verdicts with those of advanced AI systems. However, in light of their complexity, these AI systems will often function as black boxes: the details of their contents, calculations, and procedures cannot be meaningfully understood by human practitioners. When AI systems reach this level of complexity, we can also speak of black-box medicine. In this paper, we want to argue that black-box medicine conflicts with core ideals of patient-centered medicine. In particular, we claim, black-box medicine is not conducive for supporting informed decision-making based on shared information, shared deliberation, and shared mind between practitioner and patient

    What does it take to make integrated care work? A ‘cookbook’ for large-scale deployment of coordinated care and telehealth

    Get PDF
    The Advancing Care Coordination & Telehealth Deployment (ACT) Programme is the first to explore the organisational and structural processes needed to successfully implement care coordination and telehealth (CC&TH) services on a large scale. A number of insights and conclusions were identified by the ACT programme. These will prove useful and valuable in supporting the large-scale deployment of CC&TH. Targeted at populations of chronic patients and elderly people, these insights and conclusions are a useful benchmark for implementing and exchanging best practices across the EU. Examples are: Perceptions between managers, frontline staff and patients do not always match; Organisational structure does influence the views and experiences of patients: a dedicated contact person is considered both important and helpful; Successful patient adherence happens when staff are engaged; There is a willingness by patients to participate in healthcare programmes; Patients overestimate their level of knowledge and adherence behaviour; The responsibility for adherence must be shared between patients and health care providers; Awareness of the adherence concept is an important factor for adherence promotion; The ability to track the use of resources is a useful feature of a stratification strategy, however, current regional case finding tools are difficult to benchmark and evaluate; Data availability and homogeneity are the biggest challenges when evaluating the performance of the programmes

    KBS for Desktop PC Troubleshooting

    Get PDF
    Abstract: Background: In spite of the fact that computers continue to improve in speed and functions operation, they remain complex to use. Problems frequently happen, and it is hard to resolve or find solutions for them. This paper outlines the significance and feasibility of building a desktop PC problems diagnosis system. The system gathers problem symptoms from users’ desktops, rather than the user describes his/her problems to primary search engines. It automatically searches global databases of problem symptoms and solutions, and also allows ordinary users to contribute exact problem reports in a structured manner. Objectives: The main goal of this Knowledge Based System is to get the suitable problem desktop PC symptoms and the correct way to solve the errors. Methods: In this paper the design of the proposed Knowledge Based System which was produced to help users of desktop PC in knowing many of the problems and error such as : Power supply problems, CPU errors, RAM dumping error, hard disk errors and bad sectors and suddenly restarting PC. The proposed Knowledge Based System presents an overview about desktop PC hardware errors are given, the cause of fault are outlined and the solution to the problems whenever possible is given out. CLIPS Knowledge Based System language was used for designing and implementing the proposed expert system. Results: The proposed PC desktop troubleshooting Knowledge Based System was evaluated by IT students and they were satisfied with its performance

    Cross-Modal Health State Estimation

    Full text link
    Individuals create and consume more diverse data about themselves today than any time in history. Sources of this data include wearable devices, images, social media, geospatial information and more. A tremendous opportunity rests within cross-modal data analysis that leverages existing domain knowledge methods to understand and guide human health. Especially in chronic diseases, current medical practice uses a combination of sparse hospital based biological metrics (blood tests, expensive imaging, etc.) to understand the evolving health status of an individual. Future health systems must integrate data created at the individual level to better understand health status perpetually, especially in a cybernetic framework. In this work we fuse multiple user created and open source data streams along with established biomedical domain knowledge to give two types of quantitative state estimates of cardiovascular health. First, we use wearable devices to calculate cardiorespiratory fitness (CRF), a known quantitative leading predictor of heart disease which is not routinely collected in clinical settings. Second, we estimate inherent genetic traits, living environmental risks, circadian rhythm, and biological metrics from a diverse dataset. Our experimental results on 24 subjects demonstrate how multi-modal data can provide personalized health insight. Understanding the dynamic nature of health status will pave the way for better health based recommendation engines, better clinical decision making and positive lifestyle changes.Comment: Accepted to ACM Multimedia 2018 Conference - Brave New Ideas, Seoul, Korea, ACM ISBN 978-1-4503-5665-7/18/1

    XRay: Enhancing the Web's Transparency with Differential Correlation

    Get PDF
    Today's Web services - such as Google, Amazon, and Facebook - leverage user data for varied purposes, including personalizing recommendations, targeting advertisements, and adjusting prices. At present, users have little insight into how their data is being used. Hence, they cannot make informed choices about the services they choose. To increase transparency, we developed XRay, the first fine-grained, robust, and scalable personal data tracking system for the Web. XRay predicts which data in an arbitrary Web account (such as emails, searches, or viewed products) is being used to target which outputs (such as ads, recommended products, or prices). XRay's core functions are service agnostic and easy to instantiate for new services, and they can track data within and across services. To make predictions independent of the audited service, XRay relies on the following insight: by comparing outputs from different accounts with similar, but not identical, subsets of data, one can pinpoint targeting through correlation. We show both theoretically, and through experiments on Gmail, Amazon, and YouTube, that XRay achieves high precision and recall by correlating data from a surprisingly small number of extra accounts.Comment: Extended version of a paper presented at the 23rd USENIX Security Symposium (USENIX Security 14
    corecore