45,834 research outputs found

    Neutron matter at zero temperature with auxiliary field diffusion Monte Carlo

    Full text link
    The recently developed auxiliary field diffusion Monte Carlo method is applied to compute the equation of state and the compressibility of neutron matter. By combining diffusion Monte Carlo for the spatial degrees of freedom and auxiliary field Monte Carlo to separate the spin-isospin operators, quantum Monte Carlo can be used to simulate the ground state of many nucleon systems (A\alt 100). We use a path constraint to control the fermion sign problem. We have made simulations for realistic interactions, which include tensor and spin--orbit two--body potentials as well as three-nucleon forces. The Argonne v8′v_8' and v6′v_6' two nucleon potentials plus the Urbana or Illinois three-nucleon potentials have been used in our calculations. We compare with fermion hypernetted chain results. We report results of a Periodic Box--FHNC calculation, which is also used to estimate the finite size corrections to our quantum Monte Carlo simulations. Our AFDMC results for v6v_6 models of pure neutron matter are in reasonably good agreement with equivalent Correlated Basis Function (CBF) calculations, providing energies per particle which are slightly lower than the CBF ones. However, the inclusion of the spin--orbit force leads to quite different results particularly at relatively high densities. The resulting equation of state from AFDMC calculations is harder than the one from previous Fermi hypernetted chain studies commonly used to determine the neutron star structure.Comment: 15 pages, 15 tables and 5 figure

    Chiral-Odd Structure Function h_1^D(x) and Tensor Charge of the Deuteron

    Get PDF
    The chiral-odd structure function h_{1}^D(x) and the tensor charge of the deuteron are studied within the Bethe-Salpeter formalism for the deuteron amplitude. Utilizing a simple model for the nucleon structure function, h_1^N, h_1^D(x) is calculated and the nuclear effects are analyzed.Comment: 10 pages, plus 3 Postscript figure

    Ground state of N=Z doubly closed shell nuclei in CBF theory

    Full text link
    The ground state properties of N=Z doubly closed shell nuclei are studied within correlated basis function theory. A truncated version of the Urbana v14 realistic potential, with spin, isospin and tensor components, is adopted, together with state dependent correlations. Fermi hypernetted chain integral equation and single operator chain approximation are used to evaluate density, distribution function and ground state energy of 16O and 40Ca. The results favourably compare with the available, variational MonteCarlo estimates and provide a first substantial check of the accuracy of the cluster summation method for state dependent correlations. We achieve in finite nuclei at least the same level of accuracy in the treatment of non central interactions and correlations as in nuclear matter. This opens the way for a microscopic study of medium heavy nuclei ground state using present days realistic hamiltonians.Comment: 35 pages (LateX) + 3 figures. Phys.Rev.C, in pres

    CMB power spectrum estimation using noncircular beams

    Full text link
    The measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy has proved crucial to the emergence of cosmology as a precision science in recent years. In this remarkable data rich period, the limitations to precision now arise from the the inability to account for finer systematic effects in data analysis. The non-circularity of the experimental beam has become progressively important as CMB experiments strive to attain higher angular resolution and sensitivity. We present an analytic framework for studying the leading order effects of a non-circular beam on the CMB power spectrum estimation. We consider a non-circular beam of fixed shape but variable orientation. We compute the bias in the pseudo-ClC_l power spectrum estimator and then construct an unbiased estimator using the bias matrix. The covariance matrix of the unbiased estimator is computed for smooth, non-circular beams. Quantitative results are shown for CMB maps made by a \emph{hypothetical} experiment with a non-circular beam comparable to our fits to the WMAP beam maps described in the appendix and uses a \emph{toy} scan strategy. We find that significant effects on CMB power spectrum can arise due to non-circular beam on multipoles comparable to, and beyond, the inverse average beam-width where the pseudo-ClC_l approach may be the method of choice due to computational limitations of analyzing the large datasets from current and near future CMB experiments.Comment: 23 pages, 12 eps figures, uses RevTeX 4. Matches version accepted to Phys. Rev. D. Corrected minor typographical error in the final expression [eqn (3.23)] (post publication

    Generic Conditions for Forecast Dominance

    Get PDF
    Recent studies have analyzed whether one forecast method dominates another under a class of consistent scoring functions. While the existing literature focuses on empirical tests of forecast dominance, little is known about the theoretical conditions under which one forecast dominates another. To address this question, we derive a new characterization of dominance among forecasts of the mean functional. We present various scenarios under which dominance occurs. Unlike existing results, our results allow for the case that the forecasts' underlying information sets are not nested, and allow for uncalibrated forecasts that suffer, e.g., from model misspecification or parameter estimation error. We illustrate the empirical relevance of our results via data examples from finance and economics
    • …
    corecore