496 research outputs found

    Integrated Measurement System of Postural Angle and Electromyography Signal for Manual Materials Handling Assessment

    Get PDF
    Ergonomics practitioners and engineers require an integrated measurement system which allows them to study the interaction of work posture and muscle effort in manual materials handling (MMH) tasks so that strenuous posture and muscle strain can be avoided. However, far too little attention has been paid to develop an integrated measurement system of work posture and muscle activity for assessing MMH tasks. The aim of this study was to develop and test a prototype of integrated system for measuring work posture angles and (electromyography) EMG signals of a worker who doing MMH tasks. The Microsoft Visual Studio software, a 3D camera (Microsoft Kinect), Advancer Technologies muscle sensors and a microcontroller (NI DAQ USB-6000) were applied to develop the integrated postural angle and EMG signal measurement system. Additionally, a graphical user interface was created in the system to enable users to perform work posture and muscle effort assessment simultaneously. Based on the testing results, this study concluded that the patterns of EMG signals are depending on postural angles which consistent with the findings of established works. Further study is required to enhance the validity, reliability and usability of the prototype so that it may facilitate ergonomics practitioners and engineers to assess work posture and muscle effort in MMH task

    Hum Factors

    Get PDF
    Objective:A computer vision method was developed for estimating the trunk flexion angle, angular speed, and angular acceleration by extracting simple features from the moving image during lifting.Background:Trunk kinematics is an important risk factor for lower back pain, but is often difficult to measure by practitioners for lifting risk assessments.Methods:Mannequins representing a wide range of hand locations for different lifting postures were systematically generated using the University of Michigan 3DSSPP software. A bounding box was drawn tightly around each mannequin and regression models estimated trunk angles. The estimates were validated against human posture data for 216 lifts collected using a laboratory-grade motion capture system and synchronized video recordings. Trunk kinematics, based on bounding box dimensions drawn around the subjects in the video recordings of the lifts, were modeled for consecutive video frames.Results:The mean absolute difference between predicted and motion capture measured trunk angles was 14.65\ub0, and there was a significant linear relationship between predicted and measured trunk angles (R2 = 0.80, p < 0.001). The training error for the kinematics model was 2.34\ub0.Conclusion:Using simple computer vision extracted features, the bounding box method indirectly estimated trunk angle and associated kinematics, albeit with limited precision.Application:This computer vision method may be implemented on hand-held devices such as smartphones to facilitate automatic lifting risk assessments in the workplace.R01OH011024/ACL/ACL HHSUnited States/R01 OH011024/OH/NIOSH CDC HHSUnited States/T42OH008434/ACL/ACL HHSUnited States/CC999999/ImCDC/Intramural CDC HHSUnited States/T42 OH008434/OH/NIOSH CDC HHSUnited States

    Video pulse rate variability analysis in stationary and motion conditions

    Get PDF
    Background: In the last few years, some studies have measured heart rate (HR) or heart rate variability (HRV) parameters using a video camera. This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. To date, most of these works have obtained HRV parameters in stationary conditions, and there are practically no studies that obtain these parameters in motion scenarios and by conducting an in-depth statistical analysis. Methods: In this study, a video pulse rate variability (PRV) analysis is conducted by measuring the pulse-to-pulse (PP) intervals in stationary and motion conditions. Firstly, given the importance of the sampling rate in a PRV analysis and the low frame rate of commercial cameras, we carried out an analysis of two models to evaluate their performance in the measurements. We propose a selective tracking method using the Viola–Jones and KLT algorithms, with the aim of carrying out a robust video PRV analysis in stationary and motion conditions. Data and results of the proposed method are contrasted with those reported in the state of the art. Results: The webcam achieved better results in the performance analysis of video cameras. In stationary conditions, high correlation values were obtained in PRV parameters with results above 0.9. The PP time series achieved an RMSE (mean ± standard deviation) of 19.45 ± 5.52 ms (1.70 ± 0.75 bpm). In the motion analysis, most of the PRV parameters also achieved good correlation results, but with lower values as regards stationary conditions. The PP time series presented an RMSE of 21.56 ± 6.41 ms (1.79 ± 0.63 bpm). Conclusions: The statistical analysis showed good agreement between the reference system and the proposed method. In stationary conditions, the results of PRV parameters were improved by our method in comparison with data reported in related works. An overall comparative analysis of PRV parameters in motion conditions was more limited due to the lack of studies or studies containing insufficient data analysis. Based on the results, the proposed method could provide a low-cost, contactless and reliable alternative for measuring HR or PRV parameters in non-clinical environments.Peer ReviewedPostprint (published version

    Estimating Carotid Pulse and Breathing Rate from Near-infrared Video of the Neck

    Full text link
    Objective: Non-contact physiological measurement is a growing research area that allows capturing vital signs such as heart rate (HR) and breathing rate (BR) comfortably and unobtrusively with remote devices. However, most of the approaches work only in bright environments in which subtle photoplethysmographic and ballistocardiographic signals can be easily analyzed and/or require expensive and custom hardware to perform the measurements. Approach: This work introduces a low-cost method to measure subtle motions associated with the carotid pulse and breathing movement from the neck using near-infrared (NIR) video imaging. A skin reflection model of the neck was established to provide a theoretical foundation for the method. In particular, the method relies on template matching for neck detection, Principal Component Analysis for feature extraction, and Hidden Markov Models for data smoothing. Main Results: We compared the estimated HR and BR measures with ones provided by an FDA-cleared device in a 12-participant laboratory study: the estimates achieved a mean absolute error of 0.36 beats per minute and 0.24 breaths per minute under both bright and dark lighting. Significance: This work advances the possibilities of non-contact physiological measurement in real-life conditions in which environmental illumination is limited and in which the face of the person is not readily available or needs to be protected. Due to the increasing availability of NIR imaging devices, the described methods are readily scalable.Comment: 21 pages, 15 figure

    Driving ergonomics for an elevated seat position in a light commercial vehicle

    Get PDF
    With more legislation being enforced to achieve a reduction in road transport CO2 emissions, automotive companies are having to research and develop technologies that deliver greener driving . Whilst emissions from passenger vehicles have dropped over recent years, there has been an increase in emissions from light commercial vehicles (LCVs). The nature of LCV delivery work is a routine of ingress/egress of the vehicle, changing from a standing to a seated posture repetitively throughout the day. One research focus is packaging occupants in to a smaller vehicle space, in order to reduce the amount of vehicle emissions over its lifecycle. For LCVs, benefits from space saving technology could be an increase in overall loading space (with the same vehicle length) or a reduction in the overall length/weight of the vehicle. Furthermore, an elevated seat posture could reduce the strain on drivers during ingress/egress, as it is closer than that of a conventional seat to a standing posture. Whilst space saving technology has obvious benefits, current driving conventions and standards are not inclusive of new and novel seated postures when packaging a driver in to a vehicle. The fundamental purpose of a vehicle driver s seat is to be comfortable and safe for the occupant and to facilitate driving. It has been shown that a seat needs both good static and dynamic factors to contribute to overall seat comfort. Additionally, comfortable body angles have been identified and ratified by studies investigating comfortable driving postures; however, this knowledge only applies to conventional driving postures. For an elevated posture , defined as having the driver s knee point below the hip point, there is little research or guidance. The overall aim of this thesis is to identify the ergonomic requirements of a wide anthropometric range of drivers in an elevated driving posture for LCVs, which was investigated using a series of laboratory based experiments. An iterative fitting trial was designed to identify key seat parameters for static comfort in an elevated posture seat. The results showed that in comparison with a conventional seat: Seat base length was preferred to be shorter (380mm compared with 460mm); Seat base width was preferred to be wider (560mm compared with 480mm); Backrest height was preferred to be longer (690mm compared with 650mm). These findings provided a basis for a seat design specification for an elevated posture concept seat, which was tested in two subsequent laboratory studies. A long-term discomfort evaluation was conducted, using a driving simulator and a motion platform replicating real road vibration. Discomfort scores were collected at 10-minute intervals (50-minutes overall) using a body map and rating scale combination. The results indicated that in comparison with the conventional posture, the elevated posture performed as well, or better (significantly lower discomfort for right shoulder and lower back; p<0.05, two-tailed), in terms of long-term discomfort. Furthermore, the onset of discomfort (i.e. the time taken for localised discomfort ratings to be significantly higher than the baseline ratings reported before the trial) occurred after as little as 10 minutes (conventional posture) and 20 minutes (elevated posture) respectively. A lateral stability evaluation was conducted using low-frequency lateral motion on a motion platform (platform left and right rolls of 14.5°). Stability scores were reported after each sequence of rolls, comparing scores on a newly developed lateral stability scale between three seats: Conventional posture seat; Elevated posture concept seat (EPS1); Elevated posture concept seat with modifications aimed at improving stability (EPS2). Participants reported being more unstable in EPS1, compared with the conventional posture seat (p<0.05, Wilcoxon). However, the EPS2 seat performed equally to the conventional posture seat. These findings suggest that the elevated posture seat developed in this research is a feasible and comfortable alternative to a conventional posture seat. Furthermore, the final elevated seating positions showed that real space saving can be achieved in this posture thus allowing for more compact and lighter vehicles and potentially reducing strain on drivers during ingress/egress

    Comparing the Effectiveness of Verbal Feedback Versus Acoustical Feedback Within a Behavior Skills Training Package When Teaching Beginning Yoga Postures to Novice Yoga Practitioners

    Get PDF
    Behavior skills training (BST), composed of modeling, instructions, rehearsal, and feedback, is an efficient and commonly used training package that has been proven effective in fostering behavior change in a variety of learners and with a multitude of behaviors, including those related to health and fitness. Feedback has been deemed a critical component of BST and there are various ways in which feedback can be administered. This study compared the effectiveness and efficiency of providing verbal feedback versus acoustical feedback within a BST package when teaching beginning yoga postures to participants who have never before practiced yoga. No feedback method proved to be significantly more effective or efficient than the other. Future research should replicate this study with additional participants to gather more substantial findings

    Kinect as an access device for people with cerebral palsy: A preliminary study

    Get PDF
    Cerebral palsy (CP) describes a group of disorders affecting the development of movement and posture, causingactivity limitation. Access to technology can alleviate some of these limitations. Many studies have used vision- based movement capture systems to overcome problems related to discomfort and fear of wearing devices. Incontrast, there has been no research assessing the behavior of vision-based movement capture systems in peoplewith involuntary movements. In this paper, we look at the potential of the Kinect sensor as an assistive technologyfor people with cerebral palsy. We developed a serious game, called KiSens Números, to study the behavior ofKinect in this context and eighteen subjects with cerebral palsy used it to complete a set of sessions. The resultsof the experiments show that Kinect filters some of peoples involuntary movements, confirming the potential ofKinect as an assistive technology for people with motor disabilities

    The development of fully automated RULA assessment system based on Computer Vision

    Get PDF
    The purpose of this study was to develop an automated, RULA-based posture assessment system using a deep learning algorithm to estimate RULA scores, including scores for wrist posture, based on images of workplace postures. The proposed posture estimation system reported a mean absolute error (MAE) of 2.86 on the validation dataset obtained by randomly splitting 20% of the original training dataset before data augmentation. The results of the proposed system were compared with those of two experts’ manual evaluation by computing the Intraclass correlation coefficient (ICC), which yielded index values greater than 0.75, thereby confirming good agreement between manual raters and the proposed system. This system will reduce the time required for postural evaluation while producing highly reliable RULA scores that are consistent with those generated by manual approach. Thus, we expect that this study will aid ergonomic experts in conducting RULA-based surveys of occupational postures in workplace conditions
    • …
    corecore