170 research outputs found

    AIDI: An adaptive image denoising FPGA-based IP-core for real-time applications

    Get PDF
    The presence of noise in images can significantly impact the performances of digital image processing and computer vision algorithms. Thus, it should be removed to improve the robustness of the entire processing flow. The noise estimation in an image is also a key factor, since, to be more effective, algorithms and denoising filters should be tuned to the actual level of noise. Moreover, the complexity of these algorithms brings a new challenge in real-time image processing applications, requiring high computing capacity. In this context, hardware acceleration is crucial, and Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. This paper presents an Adaptive Image Denoising IP-core (AIDI) for real-time applications. The core first estimates the level of noise in the input image, then applies an adaptive Gaussian smoothing filter to remove the estimated noise. The filtering parameters are computed on-the-fly, adapting them to the level of noise in the image, and pixel by pixel, to preserve image information (e.g., edges or corners). The FPGA-based architecture is presented, highlighting its improvements w.r.t. a standard static filtering approac

    Real-Time Quantum Noise Suppression In Very Low-Dose Fluoroscopy

    Get PDF
    Fluoroscopy provides real-time X-ray screening of patient's organs and of various radiopaque objects, which make it an invaluable tool for many interventional procedures. For this reason, the number of fluoroscopy screenings has experienced a consistent growth in the last decades. However, this trend has raised many concerns about the increase in X-ray exposure, as even low-dose procedures turned out to be not as safe as they were considered, thus demanding a rigorous monitoring of the X-ray dose delivered to the patients and to the exposed medical staff. In this context, the use of very low-dose protocols would be extremely beneficial. Nonetheless, this would result in very noisy images, which need to be suitably denoised in real-time to support interventional procedures. Simple smoothing filters tend to produce blurring effects that undermines the visibility of object boundaries, which is essential for the human eye to understand the imaged scene. Therefore, some denoising strategies embed noise statistics-based criteria to improve their denoising performances. This dissertation focuses on the Noise Variance Conditioned Average (NVCA) algorithm, which takes advantage of the a priori knowledge of quantum noise statistics to perform noise reduction while preserving the edges and has already outperformed many state-of-the-art methods in the denoising of images corrupted by quantum noise, while also being suitable for real-time hardware implementation. Different issues are addressed that currently limit the actual use of very low-dose protocols in clinical practice, e.g. the evaluation of actual performances of denoising algorithms in very low-dose conditions, the optimization of tuning parameters to obtain the best denoising performances, the design of an index to properly measure the quality of X-ray images, and the assessment of an a priori noise characterization approach to account for time-varying noise statistics due to changes of X-ray tube settings. An improved NVCA algorithm is also presented, along with its real-time hardware implementation on a Field Programmable Gate Array (FPGA). The novel algorithm provides more efficient noise reduction performances also for low-contrast moving objects, thus relaxing the trade-off between noise reduction and edge preservation, while providing a further reduction of hardware complexity, which allows for low usage of logic resources also on small FPGA platforms. The results presented in this dissertation provide the means for future studies aimed at embedding the NVCA algorithm in commercial fluoroscopic devices to accomplish real-time denoising of very low-dose X-ray images, which would foster their actual use in clinical practice

    Real-time Ultrasound Signals Processing: Denoising and Super-resolution

    Get PDF
    Ultrasound acquisition is widespread in the biomedical field, due to its properties of low cost, portability, and non-invasiveness for the patient. The processing and analysis of US signals, such as images, 2D videos, and volumetric images, allows the physician to monitor the evolution of the patient's disease, and support diagnosis, and treatments (e.g., surgery). US images are affected by speckle noise, generated by the overlap of US waves. Furthermore, low-resolution images are acquired when a high acquisition frequency is applied to accurately characterise the behaviour of anatomical features that quickly change over time. Denoising and super-resolution of US signals are relevant to improve the visual evaluation of the physician and the performance and accuracy of processing methods, such as segmentation and classification. The main requirements for the processing and analysis of US signals are real-time execution, preservation of anatomical features, and reduction of artefacts. In this context, we present a novel framework for the real-time denoising of US 2D images based on deep learning and high-performance computing, which reduces noise while preserving anatomical features in real-time execution. We extend our framework to the denoise of arbitrary US signals, such as 2D videos and 3D images, and we apply denoising algorithms that account for spatio-temporal signal properties into an image-to-image deep learning model. As a building block of this framework, we propose a novel denoising method belonging to the class of low-rank approximations, which learns and predicts the optimal thresholds of the Singular Value Decomposition. While previous denoise work compromises the computational cost and effectiveness of the method, the proposed framework achieves the results of the best denoising algorithms in terms of noise removal, anatomical feature preservation, and geometric and texture properties conservation, in a real-time execution that respects industrial constraints. The framework reduces the artefacts (e.g., blurring) and preserves the spatio-temporal consistency among frames/slices; also, it is general to the denoising algorithm, anatomical district, and noise intensity. Then, we introduce a novel framework for the real-time reconstruction of the non-acquired scan lines through an interpolating method; a deep learning model improves the results of the interpolation to match the target image (i.e., the high-resolution image). We improve the accuracy of the prediction of the reconstructed lines through the design of the network architecture and the loss function. %The design of the deep learning architecture and the loss function allow the network to improve the accuracy of the prediction of the reconstructed lines. In the context of signal approximation, we introduce our kernel-based sampling method for the reconstruction of 2D and 3D signals defined on regular and irregular grids, with an application to US 2D and 3D images. Our method improves previous work in terms of sampling quality, approximation accuracy, and geometry reconstruction with a slightly higher computational cost. For both denoising and super-resolution, we evaluate the compliance with the real-time requirement of US applications in the medical domain and provide a quantitative evaluation of denoising and super-resolution methods on US and synthetic images. Finally, we discuss the role of denoising and super-resolution as pre-processing steps for segmentation and predictive analysis of breast pathologies

    Weighted Mean Curvature

    Full text link
    In image processing tasks, spatial priors are essential for robust computations, regularization, algorithmic design and Bayesian inference. In this paper, we introduce weighted mean curvature (WMC) as a novel image prior and present an efficient computation scheme for its discretization in practical image processing applications. We first demonstrate the favorable properties of WMC, such as sampling invariance, scale invariance, and contrast invariance with Gaussian noise model; and we show the relation of WMC to area regularization. We further propose an efficient computation scheme for discretized WMC, which is demonstrated herein to process over 33.2 giga-pixels/second on GPU. This scheme yields itself to a convolutional neural network representation. Finally, WMC is evaluated on synthetic and real images, showing its superiority quantitatively to total-variation and mean curvature.Comment: 12 page

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Toward a priori noise characterization for real-time edge-aware denoising in fluoroscopic devices

    Get PDF
    Background: Low-dose X-ray images have become increasingly popular in the last decades, due to the need to guarantee the lowest reasonable patient’s exposure. Dose reduction causes a substantial increase of quantum noise, which needs to be suitably suppressed. In particular, real-time denoising is required to support common interventional fluoroscopy procedures. The knowledge of noise statistics provides precious information that helps to improve denoising performances, thus making noise estimation a crucial task for effective denoising strategies. Noise statistics depend on different factors, but are mainly influenced by the X-ray tube settings, which may vary even within the same procedure. This complicates real-time denoising, because noise estimation should be repeated after any changes in tube settings, which would be hardly feasible in practice. This work investigates the feasibility of an a priori characterization of noise for a single fluoroscopic device, which would obviate the need for inferring noise statics prior to each new images acquisition. The noise estimation algorithm used in this study was tested in silico to assess its accuracy and reliability. Then, real sequences were acquired by imaging two different X-ray phantoms via a commercial fluoroscopic device at various X-ray tube settings. Finally, noise estimation was performed to assess the matching of noise statistics inferred from two different sequences, acquired independently in the same operating conditions. Results: The noise estimation algorithm proved capable of retrieving noise statistics, regardless of the particular imaged scene, also achieving good results even by using only 10 frames (mean percentage error lower than 2%). The tests performed on the real fluoroscopic sequences confirmed that the estimated noise statistics are independent of the particular informational content of the scene from which they have been inferred, as they turned out to be consistent in sequences of the two different phantoms acquired independently with the same X-ray tube settings. Conclusions: The encouraging results suggest that an a priori characterization of noise for a single fluoroscopic device is feasible and could improve the actual implementation of real-time denoising strategies that take advantage of noise statistics to improve the trade-off between noise reduction and details preservation

    Review : Deep learning in electron microscopy

    Get PDF
    Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we discuss future directions of deep learning in electron microscopy

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Algorithms and Architectures for Some Problems in Multibeam Electron Beam Lithography and SEM Metrology

    Get PDF
    The original Moore’s law has slowed down. It has become unfeasible to double the number of transistor per unit area on integrated circuits every 18 to 24 months. However, the continuous need for computation power is driving the semiconductor industry towards innovative solutions to reduce integrated circuit sizes. Multibeam mask writers and accurate scanning electron microscopy (SEM) metrology are two such innovative solutions. Multibeam mask writers enable next-generation integrated circuit fabrication technologies like extreme ultraviolet lithography (EUV). However, the digital communication capacity constraints limit the widespread adoption of multibeam mask writers. In the first part of this dissertation thesis, we present a study of multibeam systems and offer improvements to increase their communication capacity. We propose improvements to the communication datapath architecture, compression algorithms, and the decompression architecture to improve the communication capacity. In the second part of this thesis, we attempt to improve scanning electron microscopy (SEM) metrology using deep learning techniques. Poisson noise, edge effects, and instrument errors frequently corrupt SEM images. Significant improvements in SEM metrology will enable next-generation lithography. To attain metrology improvements, we first create simulated datasets of SEM images and then train multiple deep convolution neural networks on these datasets. Our deep convolution neural networks exhibit superior performance in comparison with previous techniques. Particularly, we demonstrate improvements to nanostructure roughness measurements like line edge roughness (LER), which determine the quality of fabrication processes. Overall, this thesis work attempts to improve the semiconductor manufacturing process using architectural and algorithmic improvements
    • …
    corecore