293 research outputs found

    Panoramic Stereovision and Scene Reconstruction

    Get PDF
    With advancement of research in robotics and computer vision, an increasingly high number of applications require the understanding of a scene in three dimensions. A variety of systems are deployed to do the same. This thesis explores a novel 3D imaging technique. This involves the use of catadioptric cameras in a stereoscopic arrangement. A secondary system aims to stabilize the system in the event that the cameras are misaligned during operation. The system provides a stark advantage due to it being a cost effective alternative to present day standard state-of-the-art systems that achieve the same goal of 3D imaging. The compromise lies in the quality of depth estimation, which can be overcome with a different imager and calibration. The result was a panoramic disparity map generated by the system

    Position estimation using a stereo camera as part of the perception system in a Formula Student car

    Get PDF
    This thesis presents a part of the implementation of the perception system in an autonomous Formula Student vehicle. More precisely, it develops two different pipelines to process the data from the two main sensors of the vehicle: a LiDAR and a stereo camera. The first, a stereo camera system which is based on two monocular cameras, provides traffic cone position estimations based on the detections made by a convolutional neural network. These positions are obtained by using a self-designed stereo processing algorithm, based on 2D-3D position estimates and keypoint extraction and matching. The second is a sensor fusion system that first registers both sensors based on an extrinsic calibration system that has been implemented. Then, it exploits the neural network detection from the stereo system to project the LiDAR point cloud onto the image, obtaining a balance between accurate detection and position estimation. These two systems are evaluated, compared and integrated into "Xaloc". The Formula Student vehicle developed by the Driverless UPC team.Esta tesis presenta una parte de la implementación del sistema de percepción en un vehículo autónomo de Formula Student. Concretamente, se desarrollan dos sistemas diferentes para el procesado de datos de los dos sensores principales del vehículo: un LiDAR y una cámara estéreo. El sistema de cámara estéreo se basa en dos cámaras monoculares y proporciona estimaciones de la posición de los conos de tráfico que delimitan la pista en base a las detecciones realizadas por una red neuronal convolucional. Estas posiciones se obtienen mediante el uso de un algoritmo de procesamiento estéreo de diseño propio, basado en estimaciones de posición 2D-3D y en extracción y correspondencia de "keypoints". El segundo es un sistema de fusión de sensores que primero registra ambos sensores basándose en un sistema de calibración extrínseco que se ha implementado. Luego, usa la detección hecha con la red neuronal del sistema estéreo para proyectar la nube de puntos LiDAR en la imagen, obteniendo un lo mejor de cada sensor: una detección robusta y una estimación de posición muy precisa. Estos dos sistemas se evalúan, comparan e integran en "Xaloc" el vehículo sin conductor del equipo de Formula Student Driverless UPC.Aquesta tesi presenta una part de la implementació del sistema de percepció en un vehicle autònom de Formula Student. En concret, es desenvolupen dos sistemes diferents per processar les dades dels dos principals sensors del vehicle: un LiDAR i una càmera estèreo. El sistema de càmera estèreo es basa en dues càmeres monoculars, i proporciona estimacions de les posicions dels cons de trànsit que delimiten la pista basades en les deteccions fetes amb una xarxa neuronal convolucional. Aquestes posicions s'obtenen mitjançant un algoritme de processament d'estèreo propi, basat en estimacions de posició 2D-3D i en extracció i correspondència de keypoints. El segon és un sistema de fusió de sensors que registra els dos sensors en base a un sistema de calibratge extrínsec que s'ha implementat. A continuació, fa servir les deteccions de la xarxa neuronal del sistema estèreo per projectar el núvol de punts LiDAR a la imatge, obtenint un equilibri entre una bona detecció en imatge i la precisió del núvol de punts LiDAR. Aquests dos sistemes són avaluats, comparats i integrats al "Xaloc" el vehicle sense conductor de l'equip de Formula Student Driverless UPC

    Odometria visual monocular em robôs para a agricultura com camara(s) com lentes "olho de peixe"

    Get PDF
    One of the main challenges in robotics is to develop accurate localization methods that achieve acceptable runtime performances.One of the most common approaches is to use Global Navigation Satellite System such as GPS to localize robots.However, satellite signals are not full-time available in some kind of environments.The purpose of this dissertation is to develop a localization system for a ground robot.This robot is inserted in a project called RoMoVi and is intended to perform tasks like crop monitoring and harvesting in steep slope vineyards.This vineyards are localized in the Douro region which are characterized by the presence of high hills.Thus, the context of RoMoVi is not prosperous for the use of GPS-based localization systems.Therefore, the main goal of this work is to create a reliable localization system based on vision techniques and low cost sensors.To do so, a Visual Odometry system will be used.The concept of Visual Odometry is equivalent to wheel odometry but it has the advantage of not suffering from wheel slip which is present in these kind of environments due to the harsh terrain conditions.Here, motion is tracked computing the homogeneous transformation between camera frames, incrementally.However, this approach also presents some open issues.Most of the state of art methods, specially those who present a monocular camera system, don't perform good motion estimations in pure rotations.In some of them, motion even degenerates in these situations.Also, computing the motion scale is a difficult task that is widely investigated in this field.This work is intended to solve these issues.To do so, fisheye lens cameras will be used in order to achieve wide vision field of views

    Fast GPU Accelerated Stereo Correspondence for Embedded Surveillance Camera Systems

    Get PDF
    Many surveillance applications could benefit from the use of stereo cam- eras for depth perception. While state-of-the-art methods provide high quality scene depth information, many of the methods are very time consuming and not suitable for real-time usage in limited embedded systems. This study was conducted to examine stereo correlation methods to find a suitable algorithm for real-time or near real-time depth perception through disparity maps in a stereo video surveillance camera with an embedded GPU. Moreover, novel refinements and alternations was investigated to further improve performance and quality. Quality tests were conducted in Octave while GPU suitability and performance tests were done in C++ with the OpenGL ES 2.0 library. The result is a local stereo correlation method using Normalized Cross Correlation together with sparse support windows and a suggested improvement for pixel-wise matching confidence. Applying sparse support windows increased frame rate by 35% with minimal quality penalty as compared to using full support windows

    3D rekonstrukce na iOS

    Get PDF
    This bachelor thesis describes implementation of a real-time RGBD-based 3D reconstruction pipeline suited for Apple’s iPhone X with the TrueDepth camera. First, an overview of common approaches to the reconstruction problem is made, followed by a description of the underlying algorithms and techniques used in the thesis. Finally, the implementation details of the application pipeline are presented with performance overview of the implemented application.Tato bakalářská práce popisuje implementaci řetězce pro 3D rekonstrukci z RGBD snímků v reálném čase, určené pro Apple iPhone X s TrueDepth kamerou. Nejdříve je podán přehled běžných přístupů k rekonstrukci, následován popisem algoritmů a technik použitých v této práci. Nakonec jsou popsány implementační detaily zvoleného rekonstrukčního řetězce spolu s popisem výkonnosti implementované aplikace.460 - Katedra informatikyvýborn

    Learning and Searching Methods for Robust, Real-Time Visual Odometry.

    Full text link
    Accurate position estimation provides a critical foundation for mobile robot perception and control. While well-studied, it remains difficult to provide timely, precise, and robust position estimates for applications that operate in uncontrolled environments, such as robotic exploration and autonomous driving. Continuous, high-rate egomotion estimation is possible using cameras and Visual Odometry (VO), which tracks the movement of sparse scene content known as image keypoints or features. However, high update rates, often 30~Hz or greater, leave little computation time per frame, while variability in scene content stresses robustness. Due to these challenges, implementing an accurate and robust visual odometry system remains difficult. This thesis investigates fundamental improvements throughout all stages of a visual odometry system, and has three primary contributions: The first contribution is a machine learning method for feature detector design. This method considers end-to-end motion estimation accuracy during learning. Consequently, accuracy and robustness are improved across multiple challenging datasets in comparison to state of the art alternatives. The second contribution is a proposed feature descriptor, TailoredBRIEF, that builds upon recent advances in the field in fast, low-memory descriptor extraction and matching. TailoredBRIEF is an in-situ descriptor learning method that improves feature matching accuracy by efficiently customizing descriptor structures on a per-feature basis. Further, a common asymmetry in vision system design between reference and query images is described and exploited, enabling approaches that would otherwise exceed runtime constraints. The final contribution is a new algorithm for visual motion estimation: Perspective Alignment Search~(PAS). Many vision systems depend on the unique appearance of features during matching, despite a large quantity of non-unique features in otherwise barren environments. A search-based method, PAS, is proposed to employ features that lack unique appearance through descriptorless matching. This method simplifies visual odometry pipelines, defining one method that subsumes feature matching, outlier rejection, and motion estimation. Throughout this work, evaluations of the proposed methods and systems are carried out on ground-truth datasets, often generated with custom experimental platforms in challenging environments. Particular focus is placed on preserving runtimes compatible with real-time operation, as is necessary for deployment in the field.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113365/1/chardson_1.pd
    corecore