93 research outputs found

    Digital neural circuits : from ions to networks

    Get PDF
    PhD ThesisThe biological neural computational mechanism is always fascinating to human beings since it shows several state-of-the-art characteristics: strong fault tolerance, high power efficiency and self-learning capability. These behaviours lead the developing trend of designing the next-generation digital computation platform. Thus investigating and understanding how the neurons talk with each other is the key to replicating these calculation features. In this work I emphasize using tailor-designed digital circuits for exactly implementing bio-realistic neural network behaviours, which can be considered a novel approach to cognitive neural computation. The first advance is that biological real-time computing performances allow the presented circuits to be readily adapted for real-time closed-loop in vitro or in vivo experiments, and the second one is a transistor-based circuit that can be directly translated into an impalpable chip for high-level neurologic disorder rehabilitations. In terms of the methodology, first I focus on designing a heterogeneous or multiple-layer-based architecture for reproducing the finest neuron activities both in voltage-and calcium-dependent ion channels. In particular, a digital optoelectronic neuron is developed as a case study. Second, I focus on designing a network-on-chip architecture for implementing a very large-scale neural network (e.g. more than 100,000) with human cognitive functions (e.g. timing control mechanism). Finally, I present a reliable hybrid bio-silicon closed-loop system for central pattern generator prosthetics, which can be considered as a framework for digital neural circuit-based neuro-prosthesis implications. At the end, I present the general digital neural circuit design principles and the long-term social impacts of the presented work

    Neural networks-on-chip for hybrid bio-electronic systems

    Get PDF
    PhD ThesisBy modelling the brains computation we can further our understanding of its function and develop novel treatments for neurological disorders. The brain is incredibly powerful and energy e cient, but its computation does not t well with the traditional computer architecture developed over the previous 70 years. Therefore, there is growing research focus in developing alternative computing technologies to enhance our neural modelling capability, with the expectation that the technology in itself will also bene t from increased awareness of neural computational paradigms. This thesis focuses upon developing a methodology to study the design of neural computing systems, with an emphasis on studying systems suitable for biomedical experiments. The methodology allows for the design to be optimized according to the application. For example, di erent case studies highlight how to reduce energy consumption, reduce silicon area, or to increase network throughput. High performance processing cores are presented for both Hodgkin-Huxley and Izhikevich neurons incorporating novel design features. Further, a complete energy/area model for a neural-network-on-chip is derived, which is used in two exemplar case-studies: a cortical neural circuit to benchmark typical system performance, illustrating how a 65,000 neuron network could be processed in real-time within a 100mW power budget; and a scalable highperformance processing platform for a cerebellar neural prosthesis. From these case-studies, the contribution of network granularity towards optimal neural-network-on-chip performance is explored

    Estudio e implementación de algoritmos de fusión sensorial para sensores pulsantes y clásicos con protocolo AER de comunicación y aplicación en sistemas robóticos neuroinspirados

    Get PDF
    The objective of this thesis is to analyze, design, simulate and implement a model that follows the principles of the human nervous system when a reaching movement is made. The background of the thesis is the neuromorphic engineering field. This term was first coined in the late eighties by Caver Mead. Its main objective is to develop hardware devices, based on the neuron as the basic unit, to develop a range of tasks such as: decision making, image processing, learning, etc. During the last twenty years, this field of research has gathered a large number of researchers around the world. Spike-based sensors and devices that perform spike processing tasks have been developed. A neuro-inspired controller model based on the classic algorithms VITE and FLETE is proposed in this thesis (specifically, the two algorithms presented are: the VITE model which generates a non-planned trajectory and the FLETE model to generate the forces needed to hold a position reached). The hardware platforms used to implement them are a FPGA and a VLSI multi-chip setup. Then, considering how a reaching movement is performed by humans, these algorithms are translated under the constraints of each hardware device. The constraints are: spike-processing blocks described in VHDL for the FPGA and neurons LIF for the VLSI chips. To reach a successful translation of VITE algorithm under the constraints of the FPGA, a new spike-processing block is designed, simulated and implemented: GO Block. On the other hand, to perform an accurate translation of the VITE algorithm under VLSI requirements, the recent biological advances are studied. Then, a model which implements the co-activation of NMDA channels (this activity is related to the activity detected in the basal ganglia short time before a movement is made) is modeled, simulated and implemented. Once the model is defined for both platforms, it is simulated using the Matlab Simulink environment for FPGA and Brian simulator for VLSI chips. The hardware results of the algorithms translated are presented. The open-loop spike-based VITE (on both platforms) and closed-loop (FPGA) applied and connected to a robotic platform using the AER bus show an excellent behaviour in terms of power and resources consumption. They show also an accurate and precise functioning for reaching and tracking movements when the target is supplied by an AER retina or jAER. Thus, a full neuro-inspired architecture is implemented: from the sensor (retina) to the end effector (robot) going through the neuro-inspired controller designed. An alternative for the SVITE platform is also presented. A random element is added to the neuron model to include variability in the neural response. The results obtained for this variant, show a similar behaviour if a comparison with the deterministic algorithms is made. The possibility to include this pseudo-random controller in noise and / or random environment is demonstrated. Finally, this thesis claims that PFM is the most suitable modulation to drive motors in a neuromorphic hardware environment. It allows supplying the events directly to the motors. Furthermore, it is achieved that the system is not affected by spurious or noisy events. The novel results achieved with the VLSI multi-chip setup, this is the first attempt to control a robotic platform using sub-thresold low-power neurons, intended to set the basis for designing neuro-inspired controllers

    Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks

    Get PDF
    We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry

    Optogenetics in silicon: A neural processor for predicting optically active neural networks

    Get PDF
    We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry
    corecore