355 research outputs found

    Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving

    Get PDF
    This dissertation formulates algorithms that use preview information of road terrain and traffic flow for reducing energy use and emissions of modern vehicles with conventional or hybrid powertrains. Energy crisis, long term energy deficit, and more restrictive environmental protection policies require developing more efficient and cleaner vehicle powertrain systems. An alternative to making advanced technology engines or electrifying the vehicle powertrain is utilizing ambient terrain and traffic information in the energy management of vehicles, a topic which has not been emphasized in the past. Today\u27s advances in vehicular telematics and advances in GIS (Geographic Information System), GPS (Global Positioning Systems), ITS (Intelligent Transportation Systems), V2V (Vehicle to Vehicle) communication, and VII (Vehicle Infrastructure Integration ) create more opportunities for predicting a vehicle\u27s trip information with details such as the future road grade, the distance to the destination, speed constraints imposed by the traffic flow, which all can be utilized for better vehicle energy management. Optimal or near optimal decision-making based on this available information requires optimal control methods, whose fundamental theories were well studied in the past but are not directly applicable due to the complexity of real problems and uncertainty in the available preview information. This dissertation proposes the use of optimal control theories and tools including Pontryagin minimum principle, Dynamic Programming (DP) which is a numerical realization of Bellman\u27s principle of optimality, and Model Predictive Control (MPC) in the optimization-based control of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles based on preview of future route information. The dissertation includes three parts introduced as follows: First, the energy saving benefit in HEV energy management by previewing future terrain information and applying optimal control methods is explored. The potential gain in fuel economy is evaluated, if road grade information is integrated in energy management of hybrid vehicles. Real-world road geometry information is taken into account in power management decisions by using both Dynamic Programming (DP) and a standard Equivalent Consumption Minimization Strategy (ECMS), derived using Pontryagin minimum principle. Secondly, the contribution of different levels of preview to energy management of plug-in hybrid vehicles (PHEVs) is studied. The gains to fuel economy of plug-in hybrid vehicles with availability of velocity and terrain preview and knowledge of distance to the next charging station are investigated. Access to future driving information is classified into full, partial, or no future information and energy management strategies for real-time implementation with partial future preview are proposed. ECMS as well as Dynamic Programming (DP) is systematically utilized to handle the resulting optimal control problems with different levels of preview. We also study the benefit of future traffic flow information preview in improving the fuel economy of conventional vehicles by predictive control methods. According to the time-scale of the preview information and its importance to the driver, the energy optimization problem is decomposed into different levels. In the microscopic level, a model predictive controller as well as a car following model is employed for predictive adaptive cruise control by stochastically forecasting the driving behavior of the lead car. In the macroscopic level, we propose to incorporate the estimated macroscopic future traffic flow information and optimize the cost-to-go by utilizing a two-dimension Dynamic Programming (2D-DP). The algorithm yields the optimal trip velocity as the reference velocity for the driver or a low level controller to follow. Through the study, we show that energy use and emissions can be reduced considerably by using preview route information. The methodologies discussed in this dissertation provide an alternative mean for the automotive industry to develop more efficient and environmentally friendly vehicles by relying mostly on software and information and with minimal hardware investments

    New Energy Management Systems for Battery Electric Vehicles with Supercapacitor

    Get PDF
    Recently, the Battery Electric Vehicle (BEV) has been considered to be a proper candidate to terminate the problems associated with fuel-based vehicles. Therefore, the development and enhancement of the BEVs have lately formed an attractive field of study. One of the significant challenges to commercialize BEVs is to overcome the battery drawbacks that limit the BEV’s performance. One promising solution is to hybridize the BEV with a supercapacitor (SC) so that the battery is the primary source of energy meanwhile the SC handles sudden fluctuations in power demand. Obviously, to exploit the most benefits from this hybrid system, an intelligent Energy Management System (EMS) is required. In this thesis, different EMSs are developed: first, the Nonlinear Model Predictive Controller (NMPC) based on Newton Generalized Minimum Residual (Newton/GMRES) method. The NMPC effectively optimizes the power distribution between the battery and supercapacitor as a result of NMPC ability to handle multi-input, multi-output problems and utilize past information to predict future power demand. However, real-time application of the NMPC is challenging due to its huge computational cost. Therefore, Newton/GMRES, which is a fast real-time optimizer, is implemented in the heart of the NMPC. Simulation results demonstrate that the Newton/GMRES NMPC successfully protects the battery during high power peaks and nadirs. On the other hand, future power demand is inherently probabilistic. Consequently, Stochastic Dynamic Programming (SDP) is employed to maximize the battery lifespan while considering the uncertain nature of power demand. The next power demand is predicted by a Markov chain. The SDP approach determines the optimal policy using the policy iteration algorithm. Implementation of the SDP is quite free-to-launch since it does not require any additional equipment. Furthermore, the SDP is an offline approach, thus, computational cost is not an issue. Simulation results are considerable compared to those of other rival approaches. Recent success stories of applying bio-inspired techniques such as Particle Swarm Optimization (PSO) to control area have motivated the author to investigate the potential of this algorithm to solve the problem at hand. The PSO is a population-based method that effectively seeks the best answer in the solution space with no need to solve complex equations. Simulation results indicate that PSO is successful in terms of optimality, but it shows some difficulties for real-time application

    Automatic Code Generation of Real-Time Nonlinear Model Predictive Control for Plug-in Hybrid Electric Vehicle Intelligent Cruise Controllers

    Get PDF
    Control systems have always been a vital part of the novel technological advancements of human being in any industry, especially transportation. With the introduction of the idea of autonomous driving, classical control systems are not effective anymore and the need for intelligent control systems is inevitable. Advanced Driver Assistance Systems (ADASs), which are systems proposed to help drivers improve the process of driving, and Intelligent Transportation Systems (ITS), which are proposed to provide information that promotes more coordinated and more ecological driving, require novel intelligent controllers that are adaptive to driving conditions. Therefore, the development of different strategic vehicle control systems by employing state-of-the-art intelligent control methods has been an active field of research in recent years. The highly variant nature of transportation implies that an effective intelligent control technique must be able to handle a large multi-input multi-output (MIMO) system with nonlinear complex dynamics. It must also store and analyse a large amount of data and information about the vehicle, its environment and traffic conditions in the process of decision-making. Nonlinear Model Predictive Control (NMPC), as a unique optimal model-based approach to intelligent control systems design, is a promising candidate that comprises all of these characteristics. The ability to solve constrained multi-objective optimization problems with a predictive approach has made this technique powerful. However, NMPC controller developers face real-time implementation challenges as this method suffers from huge computational loads. Hence, fast Real-Time Optimization (RTO) methods are proposed to overcome this drawback. Optimization methods based on Generalized Minimum Residual (GMRES) method are examples of these RTO algorithms that have shown great potential for real-time applications such as vehicle control. This thesis investigates the potential of employing GMRES-based RTO algorithms to design intelligent vehicle control systems, in particular intelligent cruise controllers. Plug-in Hybrid Electric vehicles (PHEVs) are introducing themselves as the future solutions for green and ecological transportation, the thesis also introduces an intelligent cruise controller for the Toyota Prius 2013 PHEV. To this end, an automatic multi-solver NMPC code generator based on GMRES-based RTO algorithms is developed in MATLAB. The user-friendly environment of this code generation tool allows the user to easily generate NMPC controller codes for further model-in-the-loop (MIL) and hardware-in-the-loop (HIL) simulations. Simulations are performed for two different driving scenarios: driving on hilly roads and a car-following scenario. In the case of driving on hilly roads, a comparative study is conducted between different real-time optimizers and it is concluded that the Newton/GMRES algorithm is faster than the Continuation/GMRES algorithm. A novel adaptive prediction horizon length approach is also developed to enhance the performance of the NMPC controller. Simulation results demonstrate a minimum of 3.4% energy consumption improvement as compared to a PID controller performance as well as improvement of reference speed tracking when using an adaptive prediction horizon length. In case of the car-following scenario, the effect of several tuning parameters and adaptive gains on the performance of the proposed NMPC controller is studied. Then the ecological adaptive cruise controller was tested on urban and highway driving cycles, and resulted in 3.4% and 1.2%, respectively, improvement in the cost of the trip. Finally, the proposed NMPC controllers for both intelligent cruise control systems are tested on an HIL platform for rapid control prototyping. The HIL results on a dSPACE prototype Electronic Control Unit (ECU) indicate that the real-time optimizers and the proposed NMPC controllers are fast enough to be implementable on an actual ECU for a certain range of prediction horizon sizes

    Eco-Driving Optimization Based on Variable Grid Dynamic Programming and Vehicle Connectivity in a Real-World Scenario

    Get PDF
    In a context in which the connectivity level of last-generation vehicles is constantly onthe rise, the combined use of Vehicle-To-Everything (V2X) connectivity and autonomous drivingcan provide remarkable benefits through the synergistic optimization of the route and the speedtrajectory. In this framework, this paper focuses on vehicle ecodriving optimization in a connectedenvironment: the virtual test rig of a premium segment passenger car was used for generatingthe simulation scenarios and to assess the benefits, in terms of energy and time savings, that theintroduction of V2X communication, integrated with cloud computing, can have in a real-worldscenario. The Reference Scenario is a predefined Real Driving Emissions (RDE) compliant route,while the simulation scenarios were generated by assuming two different penetration levels of V2Xtechnologies. The associated energy minimization problem was formulated and solved by means of aVariable Grid Dynamic Programming (VGDP), that modifying the variable state search grid on thebasis of the V2X information allows to drastically reduce the DP computation burden by more than95%. The simulations show that introducing a smart infrastructure along with optimizing the vehiclespeed in a real-world urban route can potentially reduce the required energy by 54% while shorteningthe travel time by 38%. Finally, a sensitivity analysis was performed on the biobjective optimizationcost function to find a set of Pareto optimal solutions, between energy and travel time minimization

    Influence of Architecture Design on the Performance and Fuel Efficiency of Hydraulic Hybrid Transmissions

    Get PDF
    Hydraulic hybrids are a proven and effective alternative to electric hybrids for increasing the fuel efficiency of on-road vehicles. To further the state-of-the-art this work investigates how architecture design influences the performance, fuel efficiency, and controllability of hydraulic hybrid transmissions. To that end a novel neural network based power management controller was proposed and investigated for conventional hydraulic hybrids. This control scheme trained a neural network to generalize the globally optimal, though non-implementable, state trajectories generated by dynamic programming. Once trained the neural network was used for online prediction of a transmission’s optimal state trajectory during untrained cycles forming the basis of an implementable controller. During hardware-in-the-loop (HIL) testing the proposed control strategy improved fuel efficiency by up to 25.5% when compared with baseline approaches. To further improve performance and fuel efficiency a novel transmission architecture termed a Blended Hydraulic Hybrid was proposed and investigated. This novel architecture improves on existing hydraulic hybrids by partially decoupling power transmission from energy storage while simultaneously providing means to recouple the systems when advantageous. Optimal control studies showed the proposed architecture improved fuel efficiency over both baseline mechanical and conventional hydraulic hybrid transmissions. Effective system level and supervisory control schemes were also proposed for the blended hybrid. In order to investigate the concept’s feasibility a blended hybrid transmission was constructed and successfully tested on a HIL transmission dynamometer. Finally to investigate controllability and driver perception an SUV was retrofitted with a blended hybrid transmission. Successful on-road vehicle testing showcased the potential of this novel hybrid architecture as a viable alternative to more conventional electric hybrids in the transportation sector

    A Novel Learning Based Model Predictive Control Strategy for Plug-in Hybrid Electric Vehicle

    Get PDF
    The multi-source electromechanical coupling renders energy management of plug-in hybrid electric vehicles (PHEVs) highly nonlinear and complex. Furthermore, the complicated nonlinear management process highly depends on knowledge of driving conditions, and hinders the control strategies efficiently applied instantaneously, leading to massive challenges in energy saving improvement of PHEVs. To address these issues, a novel learning based model predictive control (LMPC) strategy is developed for a serial-parallel PHEV with the reinforced optimal control effect in real time application. Rather than employing the velocity-prediction based MPC methods favored in the literature, an original reference-tracking based MPC solution is proposed with strong instant application capacity. To guarantee the optimal control effect, an online learning process is implemented in MPC via the Gaussian process (GP) model to address the uncertainties during state estimation. The tracking reference in LMPC based control problem in PHEV is achieved by a microscopic traffic flow analysis (MTFA) method. The simulation results validate that the proposed method can optimally manage energy flow within vehicle power sources in real time, highlighting its anticipated preferable performance

    Gear shift strategies for automotive transmissions

    Get PDF
    The development history of automotive engineering has shown the essential role of transmissions in road vehicles primarily powered by internal combustion engines. The engine with its physical constraints on the torque and speed requires a transmission to have its power converted to the drive power demand at the vehicle wheels. Under dynamic driving conditions, the transmission is required to shift in order to match the engine power with the changing drive power. Furthermore, a gear shift decision is expected to be consistent such that vehicle can remain in the next gear for a period of time without deteriorating the acceleration capability. Therefore, an optimal conversion of the engine power plays a key role in improving the fuel economy and driveability. Moreover, the consequences of the assumptions related to the discrete state variable-dependent losses, e.g. gear shifting, clutch slippage and engine starting, and their e¿ect on the gear shift control strategy are necessary to be analyzed to yield insights into the fuel usage. The ¿rst part of the thesis deals with the design of gear shift strategies for electronically controlled discrete ratio transmissions used in both conventional vehicles and Hybrid Electric Vehicles (HEVs). For conventional vehicles, together with the fuel economy, the driveability is systematically addressed in a Dynamic Programming (DP) based optimal gear shift strategy by three methods: i) the weighted inverse of the power re¬serve, ii) the constant power reserve, and iii) the variable power reserve. In addition, a Stochastic Dynamic Programming (SDP) algorithm is utilized to optimize the gear shift strategy, subject to a stochastic distribution of the power request, in order to minimize the expected fuel consumption over an in¿nite horizon. Hence, the SDP-based gear shift strategy intrinsically respects the driveability and is realtime implementable. By per¬forming a comparative analysis of all proposed gear shift methods, it is shown that the variable power reserve method achieves the highest fuel economy without deteriorating the driveability. Moreover, for HEVs, a novel fuel-optimal control algorithm, consist-ing of the continuous power split and discrete gear shift, engine on-o¿ problems, based on a combination of DP and Pontryagin’s Minimum Principle (PMP) is developed for the corresponding hybrid dynamical system. This so-called DP-PMP gear shift control approach benchmarks the development of an online implementable control strategy in terms of the optimal tradeo¿ between calculation accuracy and computational e¿ciency. Driven by an ultimate goal of realizing an online gear shift strategy, a gear shift map design methodology for discrete ratio transmissions is developed, which is applied for both conventional vehicles and HEVs. The design methodology uses an optimal gear shift algorithm as a basis to derive the optimal gear shift patterns. Accordingly, statis¬tical theory is applied to analyze the optimal gear shift pattern in order to extract the time-invariant shift rules. This alternative two-step design procedure makes the gear shift map: i) respect the fuel economy and driveability, ii) be consistent and robust with respect to shift busyness, and iii) be realtime implementation. The design process is ¿exible and time e¿cient such that an applicability to various powertrain systems con¿gured with discrete ratio transmissions is possible. Furthermore, the study in this thesis addresses the trend of utilizing the route information in the powertrain control system by proposing an integrated predictive gear shift strategy concept, consisting of a velocity algorithm and a predictive algorithm. The velocity algorithm improves the fuel economy in simulation considerably by proposing a fuel-optimal velocity trajectory over a certain driving horizon for the vehicle to follow. The predictive algorithm suc¬cessfully utilizes a prede¿ned velocity pro¿le over a certain horizon in order to realize a fuel economy improvement very close to that of the globally optimal algorithm (DP). In the second part of the thesis, the energetic losses, involved with the gear shift and engine start events in an automated manual transmission-based HEV, are modeled. The e¿ect of these losses on the control strategies and fuel consumption for (non-)powershift transmission technologies is investigated. Regarding the gear shift loss, the study ¿rstly ever discloses a perception of a fuel-e¿cient advantage of the powershift transmissions over the non-powershift ones applied for commercial vehicles. It is also shown that the engine start loss can not be ignored in seeking for a fair evaluation of the fuel economy. Moreover, the sensitivity study of the fuel consumption with respect to the prediction horizon reveals that a predictive energy management strategy can realize the highest achievable fuel economy with a horizon of a few seconds ahead. The last part of the thesis focuses on investigating the sensitivity of an optimal gear shift strategy to the relevant control design objectives, i.e. fuel economy, driveability and comfort. A singu¬lar value decomposition based method is introduced to analyze the possible correlations and interdependencies among the design objectives. This allows that some of the pos¬sible dependent design objective(s) can be removed from the objective function of the corresponding optimal control problem, hence thereby reducing the design complexity

    Real-time Energy Management of PHEVs with Supercapacitor Using Nonlinear Model Predictive Control

    Get PDF
    The earth is facing the global warming phenomenon these days, and one of its main contributors is greenhouse gas emission. As transportation produces an enormous portion of greenhouse gasses and also due to the increasing price of oil, automotive companies are now motivated more than ever to manufacture more hybrid vehicles compared to conventional vehicles. Although hybrid vehicles decrease the fuel consumption and greenhouse gas emissions, the cost of ownership and short lifespan of batteries have always been a drawback for them. Comparing the merits and demerits of batteries and Supercapacitors (SC) convinced researchers to use a combination of both to utilize vehicles with, as none of them could replace the other completely. An energy management strategy is crucial for maximizing benefits from utilizing vehicles with a hybrid energy storage system. This study includes modelling an SC module and developing Nonlinear Model Predictive Control (NMPC) strategies for the Toyota Prius Plug-in Hybrid Electric Vehicle (PHEV) with SC. Enhancements in vehicles processing units have absorbed attentions into more complex energy management strategies like MPC. Model-in-the-Loop (MIL) simulations and Hardware-in-the-Loop (HIL) tests investigate the performance of the proposed strategies. HIL tests results suggest the prediction horizon lengths for that the proposed controllers can be real-time implementable. Moreover, the MIL simulations results investigate the performances of fuel consumption and lifespan of the battery. Repeating the MIL simulations for different scenarios guarantees the performance enhancement regardless of driver's behaviour. Using Nonlinear Model Predictive Controller (NMPC) as Energy Management Strategy (EMS) in this study shows improvements in fuel consumption and lifespan of the battery up to 7.4% and 62%, respectively. While hybridizing Energy Storage System (ESS) with Supercapacitor (SC) can achieve up to 47% reduction in the battery load

    Fast Stochastic Non-linear Model Predictive Control for Electric Vehicle Advanced Driver Assistance Systems

    Get PDF
    Semi-autonomous driving assistance systems have a high potential to improve the safety and efficiency of the battery electric vehicles that are enduring limited cruising range. This paper presents an ecologically advanced driver assistance system to extend the functionality of the adaptive cruise control system. A real-time stochastic non-linear model predictive controller with probabilistic constraints is presented to compute on-line the safe and energy-efficient cruising velocity profile. The individual chance-constraint is reformulated into a convex second-order cone constraint which is robust for a general class of probability distributions. Finally, the performance of proposed approach in terms of states regulation, constraints fulfilment, and energy efficiency is evaluated on a battery electric vehicle

    Model predictive torque vectoring control with active trail-braking for electric vehicles

    Get PDF
    In this work we present the development of a torque vectoring controller for electric vehicles. The proposed controller distributes drive/brake torque between the four wheels to achieve the desired handling response and, in addition, intervenes in the longitudinal dynamics in cases where the turning radius demand is infeasible at the speed at which the vehicle is traveling. The proposed controller is designed in both the Linear and Nonlinear Model Predictive Control framework, which have shown great promise for real time implementation the last decades. Hence, we compare both controllers and observe their ability to behave under critical nonlinearities of the vehicle dynamics in limit handling conditions and constraints from the actuators and tyre-road interaction. We implement the controllers in a realistic, high fidelity simulation environment to demonstrate their performance using CarMaker and Simulink
    • …
    corecore