48 research outputs found

    Real-time head nod and shake detection for continuous human affect recognition

    Get PDF
    Human affect recognition is the field of study associated with using automatic techniques to identify human emotion or human affective state. A person’s affective states is often communicated non-verbally through body language. A large part of human body language communication is the use of head gestures. Almost all cultures use subtle head movements to convey meaning. Two of the most common and distinct head gestures are the head nod and the head shake gestures. In this paper we present a robust system to automatically detect head nod and shakes. We employ the Microsoft Kinect and utilise discrete Hidden Markov Models (HMMs) as the backbone to a to a machine learning based classifier within the system. The system achieves 86% accuracy on test datasets and results are provided

    THE USE OF CONTEXTUAL CLUES IN REDUCING FALSE POSITIVES IN AN EFFICIENT VISION-BASED HEAD GESTURE RECOGNITION SYSTEM

    Get PDF
    This thesis explores the use of head gesture recognition as an intuitive interface for computer interaction. This research presents a novel vision-based head gesture recognition system which utilizes contextual clues to reduce false positives. The system is used as a computer interface for answering dialog boxes. This work seeks to validate similar research, but focuses on using more efficient techniques using everyday hardware. A survey of image processing techniques for recognizing and tracking facial features is presented along with a comparison of several methods for tracking and identifying gestures over time. The design explains an efficient reusable head gesture recognition system using efficient lightweight algorithms to minimize resource utilization. The research conducted consists of a comparison between the base gesture recognition system and an optimized system that uses contextual clues to reduce false positives. The results confirm that simple contextual clues can lead to a significant reduction of false positives. The head gesture recognition system achieves an overall accuracy of 96% using contextual clues and significantly reduces false positives. In addition, the results from a usability study are presented showing that head gesture recognition is considered an intuitive interface and desirable above conventional input for answering dialog boxes. By providing the detailed design and architecture of a head gesture recognition system using efficient techniques and simple hardware, this thesis demonstrates the feasibility of implementing head gesture recognition as an intuitive form of interaction using preexisting infrastructure, and also provides evidence that such a system is desirable

    Real-time head nod and shake detection for continuous human affect recognition

    Full text link

    Latent-Dynamic Discriminative Models for Continuous Gesture Recognition

    Get PDF
    Many problems in vision involve the prediction of a class label for each frame in an unsegmented sequence. In this paper we develop a discriminative framework for simultaneous sequence segmentation and labeling which can capture both intrinsic and extrinsic class dynamics. Our approach incorporates hidden state variables which model the sub-structure of a class sequence and learn the dynamics between class labels. Each class label has a disjoint set of associated hidden states, which enables efficient training and inference in our model. We evaluated our method on the task of recognizing human gestures from unsegmented video streams and performed experiments on three different datasets of head and eye gestures. Our results demonstrate that our model for visual gesture recognition outperform models based on Support Vector Machines, Hidden Markov Models, and Conditional Random Fields

    Spotting Agreement and Disagreement: A Survey of Nonverbal Audiovisual Cues and Tools

    Get PDF
    While detecting and interpreting temporal patterns of non–verbal behavioral cues in a given context is a natural and often unconscious process for humans, it remains a rather difficult task for computer systems. Nevertheless, it is an important one to achieve if the goal is to realise a naturalistic communication between humans and machines. Machines that are able to sense social attitudes like agreement and disagreement and respond to them in a meaningful way are likely to be welcomed by users due to the more natural, efficient and human–centered interaction they are bound to experience. This paper surveys the nonverbal cues that could be present during agreement and disagreement behavioural displays and lists a number of tools that could be useful in detecting them, as well as a few publicly available databases that could be used to train these tools for analysis of spontaneous, audiovisual instances of agreement and disagreement

    An Efficient Boosted Classifier Tree-Based Feature Point Tracking System for Facial Expression Analysis

    Get PDF
    The study of facial movement and expression has been a prominent area of research since the early work of Charles Darwin. The Facial Action Coding System (FACS), developed by Paul Ekman, introduced the first universal method of coding and measuring facial movement. Human-Computer Interaction seeks to make human interaction with computer systems more effective, easier, safer, and more seamless. Facial expression recognition can be broken down into three distinctive subsections: Facial Feature Localization, Facial Action Recognition, and Facial Expression Classification. The first and most important stage in any facial expression analysis system is the localization of key facial features. Localization must be accurate and efficient to ensure reliable tracking and leave time for computation and comparisons to learned facial models while maintaining real-time performance. Two possible methods for localizing facial features are discussed in this dissertation. The Active Appearance Model is a statistical model describing an object\u27s parameters through the use of both shape and texture models, resulting in appearance. Statistical model-based training for object recognition takes multiple instances of the object class of interest, or positive samples, and multiple negative samples, i.e., images that do not contain objects of interest. Viola and Jones present a highly robust real-time face detection system, and a statistically boosted attentional detection cascade composed of many weak feature detectors. A basic algorithm for the elimination of unnecessary sub-frames while using Viola-Jones face detection is presented to further reduce image search time. A real-time emotion detection system is presented which is capable of identifying seven affective states (agreeing, concentrating, disagreeing, interested, thinking, unsure, and angry) from a near-infrared video stream. The Active Appearance Model is used to place 23 landmark points around key areas of the eyes, brows, and mouth. A prioritized binary decision tree then detects, based on the actions of these key points, if one of the seven emotional states occurs as frames pass. The completed system runs accurately and achieves a real-time frame rate of approximately 36 frames per second. A novel facial feature localization technique utilizing a nested cascade classifier tree is proposed. A coarse-to-fine search is performed in which the regions of interest are defined by the response of Haar-like features comprising the cascade classifiers. The individual responses of the Haar-like features are also used to activate finer-level searches. A specially cropped training set derived from the Cohn-Kanade AU-Coded database is also developed and tested. Extensions of this research include further testing to verify the novel facial feature localization technique presented for a full 26-point face model, and implementation of a real-time intensity sensitive automated Facial Action Coding System

    Head Nod Detection from a Full 3D Model

    Get PDF
    As a non-verbal communication mean, head gestures play an important role in face-to-face conversation and recognizing them is therefore of high value for social behavior analysis or Human Robotic Interactions (HRI) modelling. Among the various gestures, head nod is the most common one and can convey agreement or emphasis. In this paper, we propose a novel nod detection approach based on a full 3D face centered rotation model. Compared to previous approaches, we make two contributions. Firstly, the head rotation dynamic is computed within the head coordinate instead of the camera coordinate, leading to pose invariant gesture dynamics. Secondly, besides the rotation parame- ters, a feature related to the head rotation axis is proposed so that nod-like false positives due to body movements could be eliminated. The experiments on two-party and four-party conversations demonstrate the validity of the approach

    Real-Time Inference of Mental States from Facial Expressions and Upper Body Gestures

    Get PDF
    We present a real-time system for detecting facial action units and inferring emotional states from head and shoulder gestures and facial expressions. The dynamic system uses three levels of inference on progressively longer time scales. Firstly, facial action units and head orientation are identified from 22 feature points and Gabor filters. Secondly, Hidden Markov Models are used to classify sequences of actions into head and shoulder gestures. Finally, a multi level Dynamic Bayesian Network is used to model the unfolding emotional state based on probabilities of different gestures. The most probable state over a given video clip is chosen as the label for that clip. The average F1 score for 12 action units (AUs 1, 2, 4, 6, 7, 10, 12, 15, 17, 18, 25, 26), labelled on a frame by frame basis, was 0.461. The average classification rate for five emotional states (anger, fear, joy, relief, sadness) was 0.440. Sadness had the greatest rate, 0.64, anger the smallest, 0.11.Thales Research and Technology (UK)Bradlow Foundation TrustProcter & Gamble Compan

    Online nod detection in human–robot interaction

    Get PDF
    Wall E, Kummert F, Schillingmann L. Online nod detection in human–robot interaction. In: 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). 2017: 811-817
    corecore