368 research outputs found

    Quantum random number generation for 1.25 GHz quantum key distribution systems

    Full text link
    Security proofs of quantum key distribution (QKD) systems usually assume that the users have access to source of perfect randomness. State-of-the-art QKD systems run at frequencies in the GHz range, requiring a sustained GHz rate of generation and acquisition of quantum random numbers. In this paper we demonstrate such a high speed random number generator. The entropy source is based on amplified spontaneous emission from an erbium-doped fibre, which is directly acquired using a standard small form-factor pluggable (SFP) module. The module connects to the Field Programmable Gate Array (FPGA) of a QKD system. A real-time randomness extractor is implemented in the FPGA and achieves a sustained rate of 1.25 Gbps of provably random bits.Comment: 6 pages, 8 figure

    High-Dimensional Quantum Key Distribution based on Multicore Fiber using Silicon Photonic Integrated Circuits

    Get PDF
    Quantum Key Distribution (QKD) provides an efficient means to exchange information in an unconditionally secure way. Historically, QKD protocols have been based on binary signal formats, such as two polarisation states, and the transmitted information efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional QKD protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional QKD protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable means. Our demonstration pave the way to utilize state-of-the-art multicore fibers for long distance high-dimensional QKD, and boost silicon photonics for high information efficiency quantum communications.Comment: Please see the complementary work arXiv:1610.01682 (2016

    Quantum key distribution session with 16-dimensional photonic states

    Get PDF
    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.Comment: 8 pages, 3 figure
    • 

    corecore