76 research outputs found

    Artificial Societies of Intelligent Agents

    Get PDF
    In this thesis we present our work, where we developed artificial societies of intelligent agents, in order to understand and simulate adaptive behaviour and social processes. We obtain this in three parallel ways: First, we present a behaviours production system capable of reproducing a high number of properties of adaptive behaviour and of exhibiting emergent lower cognition. Second, we introduce a simple model for social action, obtaining emergent complex social processes from simple interactions of imitation and induction of behaviours in agents. And third, we present our approximation to a behaviours virtual laboratory, integrating our behaviours production system and our social action model in animats. In our behaviours virtual laboratory, the user can perform a wide variety of experiments, allowing him or her to test the properties of our behaviours production system and our social action model, and also to understand adaptive and social behaviour. It can be accessed and downloaded through the Internet. Before presenting our proposals, we make an introduction to artificial intelligence and behaviour-based systems, and also we give notions of complex systems and artificial societies. In the last chapter of the thesis, we present experiments carried out in our behaviours virtual laboratory showing the main properties of our behaviours production system, of our social action model, and of our behaviours virtual laboratory itself. Finally, we discuss about the understanding of adaptive behaviour as a path for understanding cognition and its evolution

    Intelligence by Design: Principles of Modularity and Coordination for Engineerin

    Get PDF
    All intelligence relies on search --- for example, the search for an intelligent agent's next action. Search is only likely to succeed in resource-bounded agents if they have already been biased towards finding the right answer. In artificial agents, the primary source of bias is engineering. This dissertation describes an approach, Behavior-Oriented Design (BOD) for engineering complex agents. A complex agent is one that must arbitrate between potentially conflicting goals or behaviors. Behavior-oriented design builds on work in behavior-based and hybrid architectures for agents, and the object oriented approach to software engineering. The primary contributions of this dissertation are: 1.The BOD architecture: a modular architecture with each module providing specialized representations to facilitate learning. This includes one pre-specified module and representation for action selection or behavior arbitration. The specialized representation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans. 2.The BOD development process: an iterative process that alternately scales the agent's capabilities then optimizes the agent for simplicity, exploiting tradeoffs between the component representations. This ongoing process for controlling complexity not only provides bias for the behaving agent, but also facilitates its maintenance and extendibility. The secondary contributions of this dissertation include two implementations of POSH action selection, a procedure for identifying useful idioms in agent architectures and using them to distribute knowledge across agent paradigms, several examples of applying BOD idioms to established architectures, an analysis and comparison of the attributes and design trends of a large number of agent architectures, a comparison of biological (particularly mammalian) intelligence to artificial agent architectures, a novel model of primate transitive inference, and many other examples of BOD agents and BOD development
    corecore