8,422 research outputs found

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Employee substitutability as a tool to improve the robustness in personnel scheduling

    Get PDF

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    Dynamic Resource Allocation For Coordination Of Inpatient Operations In Hospitals

    Get PDF
    Healthcare systems face difficult challenges such as increasing complexity of processes, inefficient utilization of resources, high pressure to enhance the quality of care and services, and the need to balance and coordinate the staff workload. Therefore, the need for effective and efficient processes of delivering healthcare services increases. Data-driven approaches, including operations research and predictive modeling, can help overcome these challenges and improve the performance of health systems in terms of quality, cost, patient health outcomes and satisfaction. Hospitals are a key component of healthcare systems with many scarce resources such as caregivers (nurses, physicians) and expensive facilities/equipment. Most hospital systems in the developed world have employed some form of an Electronic Health Record (EHR) system in recent years to improve information flow, health outcomes, and reduce costs. While EHR systems form a critical data backbone, there is a need for platforms that can allow coordinated orchestration of the relatively complex healthcare operations. Information available in EHR systems can play a significant role in providing better operational coordination between different departments/services in the hospital through optimized task/resource allocation. In this research, we propose a dynamic real-time coordination framework for resource and task assignment to improve patient flow and resource utilization across the emergency department (ED) and inpatient unit (IU) network within hospitals. The scope of patient flow coordination includes ED, IUs, environmental services responsible for room/bed cleaning/turnaround, and patient transport services. EDs across the U.S. routinely suffer from extended patient waiting times during admission from the ED to the hospital\u27s inpatient units, also known as ED patient `boarding\u27. This ED patient boarding not only compromises patient health outcomes but also blocks access to ED care for new patients from increased bed occupancy. There are also significant cost implications as well as increased stress and hazards to staff. We carry out this research with the goal of enabling two different modes of coordination implementation across the ED-to-IU network to reduce ED patient boarding: Reactive and Proactive. The proposed `reactive\u27 coordination approach is relatively easy to implement in the presence of modern EHR and hospital IT management systems for it relies only on real-time information readily available in most hospitals. This approach focuses on managing the flow of patients at the end of their ED care and being admitted to specific inpatient units. We developed a deterministic dynamic real-time coordination model for resource and task assignment across the ED-to-IU network using mixed-integer programming. The proposed \u27proactive\u27 coordination approach relies on the power of predictive analytics that anticipate ED patient admissions into the hospital as they are still undergoing ED care. The proactive approach potentially allows additional lead-time for coordinating downstream resources, however, it requires the ability to accurately predict ED patient admissions, target IU for admission, as well as the remaining length-of-stay (care) within the ED. Numerous other studies have demonstrated that modern EHR systems combined with advances in data mining and machine learning methods can indeed facilitate such predictions, with reasonable accuracy. The proposed proactive coordination optimization model extends the reactive deterministic MIP model to account for uncertainties associated with ED patient admission predictions, leading to an effective and efficient proactive stochastic MIP model. Both the reactive and proactive coordination methods have been developed to account for numerous real-world operational requirements (e.g., rolling planning horizon, event-based optimization and task assignments, schedule stability management, patient overflow management, gender matching requirements for IU rooms with double occupancy, patient isolation requirements, equity in staff utilization and equity in reducing ED patient waiting times) and computational efficiency (e.g., through model decomposition and efficient construction of scenarios for proactive coordination). We demonstrate the effectiveness of the proposed models using data from a leading healthcare facility in SE-Michigan, U.S. Results suggest that even the highly practical optimization enabled reactive coordination can lead to dramatic reduction in ED patient boarding times. Results also suggest that signification additional reductions in patient boarding are possible through the proposed proactive approach in the presence of reliable analytics models for prediction ED patient admissions and remaining ED length-of-stay. Future research can focus on further extending the scope of coordination to include admissions management (including any necessary approvals from insurance), coordination needs for admissions that stem from outside the ED (e.g., elective surgeries), as well as ambulance diversions to manage patient flows across the region and hospital networks

    Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.

    Get PDF
    Research concerning project planning under uncertainty has primarily focused on the stochastic resource-constrained project scheduling problem (stochastic RCPSP), an extension of the basic CPSP, in which the assumption of deterministic activity durations is dropped. In this paper, we introduce a new variant of the RCPSP for which the uncertainty is modeled by means of resource availabilities that are subject to unforeseen breakdowns. Our objective is to build a robust schedule that meets the project due date and minimizes the schedule instability cost, defined as the expected weighted sum of the absolute deviations between the planned and actually realized activity starting times during project execution. We describe how stochastic resource breakdowns can be modeled, which reaction is recommended when are source infeasibility occurs due to a breakdown and how one can protect the initial schedule from the adverse effects of potential breakdowns.

    A general framework integrating techniques for scheduling under uncertainty

    Get PDF
    Ces dernières années, de nombreux travaux de recherche ont porté sur la planification de tâches et l'ordonnancement sous incertitudes. Ce domaine de recherche comprend un large choix de modèles, techniques de résolution et systèmes, et il est difficile de les comparer car les terminologies existantes sont incomplètes. Nous avons cependant identifié des familles d'approches générales qui peuvent être utilisées pour structurer la littérature suivant trois axes perpendiculaires. Cette nouvelle structuration de l'état de l'art est basée sur la façon dont les décisions sont prises. De plus, nous proposons un modèle de génération et d'exécution pour ordonnancer sous incertitudes qui met en oeuvre ces trois familles d'approches. Ce modèle est un automate qui se développe lorsque l'ordonnancement courant n'est plus exécutable ou lorsque des conditions particulières sont vérifiées. Le troisième volet de cette thèse concerne l'étude expérimentale que nous avons menée. Au-dessus de ILOG Solver et Scheduler nous avons implémenté un prototype logiciel en C++, directement instancié de notre modèle de génération et d'exécution. Nous présentons de nouveaux problèmes d'ordonnancement probabilistes et une approche par satisfaction de contraintes combinée avec de la simulation pour les résoudre. ABSTRACT : For last years, a number of research investigations on task planning and scheduling under uncertainty have been conducted. This research domain comprises a large number of models, resolution techniques, and systems, and it is difficult to compare them since the existing terminologies are incomplete. However, we identified general families of approaches that can be used to structure the literature given three perpendicular axes. This new classification of the state of the art is based on the way decisions are taken. In addition, we propose a generation and execution model for scheduling under uncertainty that combines these three families of approaches. This model is an automaton that develops when the current schedule is no longer executable or when some particular conditions are met. The third part of this thesis concerns our experimental study. On top of ILOG Solver and Scheduler, we implemented a software prototype in C++ directly instantiated from our generation and execution model. We present new probabilistic scheduling problems and a constraintbased approach combined with simulation to solve some instances thereof

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version
    corecore