8,313 research outputs found

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Deterministic Versus Randomized Kaczmarz Iterative Projection

    Get PDF
    Kaczmarz's alternating projection method has been widely used for solving a consistent (mostly over-determined) linear system of equations Ax=b. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent rows, randomized Kaczmarz algorithm is expected to provide faster convergence as it picks a row for each iteration at random, based on a certain probability distribution. It was recently shown that picking a row at random, proportional with its norm, makes the iteration converge exponentially in expectation with a decay constant that depends on the scaled condition number of A and not the number of equations. Since Kaczmarz's method is a subspace projection method, the convergence rate for simple Kaczmarz algorithm was developed in terms of subspace angles. This paper provides analyses of simple and randomized Kaczmarz algorithms and explain the link between them. It also propose new versions of randomization that may speed up convergence
    • …
    corecore