313,323 research outputs found

    Distribution of the spacing between two adjacent avoided crossings

    Full text link
    We consider the frequency at which avoided crossings appear in an energy level structure when an external field is applied to a quantum chaotic system. The distribution of the spacing in the parameter between two adjacent avoided crossings is investigated. Using a random matrix model, we find that the distribution of these spacings is well fitted by a power-law distribution for small spacings. The powers are 2 and 3 for the Gaussian orthogonal ensemble and Gaussian unitary ensemble, respectively. We also find that the distributions decay exponentially for large spacings. The distributions in concrete quantum chaotic systems agree with those of the random matrix model.Comment: 11 page

    Universality in Complex Networks: Random Matrix Analysis

    Get PDF
    We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Secondly we show an analogy between the onset of small-world behavior, quantified by the structural properties of networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction network in budding yeast.Comment: 4+ pages, 4 figures, to appear in PRE, major change in the paper including titl

    Spectral Statistics in the Quantized Cardioid Billiard

    Full text link
    The spectral statistics in the strongly chaotic cardioid billiard are studied. The analysis is based on the first 11000 quantal energy levels for odd and even symmetry respectively. It is found that the level-spacing distribution is in good agreement with the GOE distribution of random-matrix theory. In case of the number variance and rigidity we observe agreement with the random-matrix model for short-range correlations only, whereas for long-range correlations both statistics saturate in agreement with semiclassical expectations. Furthermore the conjecture that for classically chaotic systems the normalized mode fluctuations have a universal Gaussian distribution with unit variance is tested and found to be in very good agreement for both symmetry classes. By means of the Gutzwiller trace formula the trace of the cosine-modulated heat kernel is studied. Since the billiard boundary is focusing there are conjugate points giving rise to zeros at the locations of the periodic orbits instead of exclusively Gaussian peaks.Comment: 20 pages, uu-encoded ps.Z-fil

    Spectral analysis of deformed random networks

    Full text link
    We study spectral behavior of sparsely connected random networks under the random matrix framework. Sub-networks without any connection among them form a network having perfect community structure. As connections among the sub-networks are introduced, the spacing distribution shows a transition from the Poisson statistics to the Gaussian orthogonal ensemble statistics of random matrix theory. The eigenvalue density distribution shows a transition to the Wigner's semicircular behavior for a completely deformed network. The range for which spectral rigidity, measured by the Dyson-Mehta Δ3\Delta_3 statistics, follows the Gaussian orthogonal ensemble statistics depends upon the deformation of the network from the perfect community structure. The spacing distribution is particularly useful to track very slight deformations of the network from a perfect community structure, whereas the density distribution and the Δ3\Delta_3 statistics remain identical to the undeformed network. On the other hand the Δ3\Delta_3 statistics is useful for the larger deformation strengths. Finally, we analyze the spectrum of a protein-protein interaction network for Helicobacter, and compare the spectral behavior with those of the model networks.Comment: accepted for publication in Phys. Rev. E (replaced with the final version

    Modelling gap-size distribution of parked cars using random-matrix theory

    Full text link
    We apply the random-matrix theory to the car-parking problem. For this purpose, we adopt a Coulomb gas model that associates the coordinates of the gas particles with the eigenvalues of a random matrix. The nature of interaction between the particles is consistent with the tendency of the drivers to park their cars near to each other and in the same time keep a distance sufficient for manoeuvring. We show that the recently measured gap-size distribution of parked cars in a number of roads in central London is well represented by the spacing distribution of a Gaussian unitary ensemble.Comment: 7 pages, 1 figur
    corecore