202 research outputs found

    A radiosity-based method to avoid calibration for Indoor Positioning Systems

    Get PDF
    Due to the widespread use of mobile devices, services based on the users current indoor location are growing in significance. Such services are developed in the Machine Learning and Experst Systems realm, and ranges from guidance for blind people to mobile tourism and indoor shopping. One of the most used techniques for indoor positioning is WiFi fingerprinting, being its use of widespread WiFi signals one of the main reasons for its popularity, mostly on high populated urban areas. Most issues of this approach rely on the data acquisition phase; to manually sample WiFi RSSI signals in order to create a WiFi radio map is a high time consuming task, also subject to re-calibrations, because any change in the environment might affect the signal propagation, and therefore degrade the performance of the positioning system. The work presented in this paper aims at substituting the manual data acquisition phase by directly calculating the WiFi radio map by means of a radiosity signal propagation model. The time needed to acquire the WiFi radio map by means of the radiosity model dramatically reduces from hours to minutes when compared with manual acquisition. The proposed method is able to produce competitive results, in terms of accuracy, when compared with manual sampling, which can help domain experts develop services based on location faster

    Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting

    Get PDF
    Mendoza-Silva, G., Costa, A. C., Torres-Sospedra, J., Painho, M., & Huerta, J. (2022). Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting. IEEE Sensors Journal, 22(6), 4978 - 4988. https://doi.org/10.1109/JSEN.2021.3073878Data enrichment through interpolation or regression is a common approach to deal with sample collection for Indoor Localization with WiFi fingerprinting. This paper provides guidelines on where to collect WiFi samples, and proposes a new model for received signal strength regression. The new model creates vectors that describe the presence of obstacles between an access point and the collected samples. The vectors, the distance between the access point and the positions of the samples, and the collected, are used to train a Support Vector Regression. The experiments included some relevant analyses and showed that the proposed model improves received signal strength regression in terms of regression residuals and positioning accuracy.authorsversionpublishe

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    A Human-Centered Approach for the Design of Perimeter Office Spaces Based on Visual Environment Criteria

    Get PDF
    With perimeter office spaces with large glazing facades being an indisputable trend in modern architecture, human comfort has been in the scope of Building science; the necessity to improve occupants’ satisfaction, along with maintaining sustainability has become apparent, as productivity and even the well-being of occupants are connected with maintaining a pleasant environment in the interior. While thermal comfort has been extensively studied, the satisfaction with the visual environment has still aspects that are either inadequately explained, or even entirely absent from literature. This Thesis investigated most aspects of the visual environment, including visual comfort, lighting energy performance through the utilization of daylight and connection to the outdoors, using experimental studies, simulation studies and human subjects’ based experiments

    New Reconstructed Database for Cost Reduction in Indoor Fingerprinting Localization

    Get PDF
    Location fingerprinting is a technique widely suggested for challenging indoor positioning. Despite the significant benefits of this technique, it needs a considerable amount of time and energy to measure the Received Signal Strength (RSS) at Reference Points (RPs) and build a fingerprinting database to achieve an appropriate localization accuracy. Reducing the number of RPs can reduce this cost, but it noticeably degrades the accuracy of positioning. In order to alleviate this problem, this paper takes the interior architecture of the indoor area and signal propagation effects into account and proposes two novel recovery methods for creating the reconstructed database instead of the measured one. They only need a few numbers of RPs to reconstruct the database and even are able to produce a denser database. The first method is a new zone-based path-loss propagation model which employs fingerprints of different zones separately and the second one is a new interpolation method, zone-based Weighted Ring-based (WRB). The proposed methods are compared with the conventional path-loss model and six interpolation functions. Two different test environments along with a benchmarking testbed, and various RPs configurations are also utilized to verify the proposed recovery methods, based on the reconstruction errors and the localization accuracies they provide. The results indicate that by taking only 11% of the initial RPs, the new zone-based path-loss model decreases the localization error up to 26% compared to the conventional path-loss model and the proposed zone-based WRB method outperforms all the other interpolation methods and improves the accuracy by 40%

    Exergy-based Planning and Thermography-based Monitoring for energy efficient buildings - Progress Report (KIT Scientific Reports ; 7632)

    Get PDF
    Designing and monitoring energy efficiency of buildings is vital since they account for up to 40% of end-use energy. In this study, exergy analysis is investigated as a life cycle design tool to strike a balance between thermodynamic efficiency of energy conversion and economic and environmental costs of construction. Quantitative geo-referenced thermography is proposed for monitoring and quantitative assessment via continued simulation and parameter estimation during the operating phase

    Measuring and understanding light in real life scenarios

    Get PDF
    Lighting design and modelling (the efficient and aesthetic placement of luminaires in a virtual or real scene) or industrial applications like luminaire planning and commissioning (the luminaire's installation and evaluation process along to the scene's geometry and structure) rely heavily on high realism and physically correct simulations. The current typical approaches are based only on CAD modeling simulations and offline rendering, with long processing times and therefore inflexible workflows. In this thesis we examine whether different camera-aided light modeling and numerical optimization approaches could be used to accurately understand, model and measure the light distribution in real life scenarios within real world environments. We show that factorization techniques could play a semantic role for light decomposition and light source identification, while we contribute a novel benchmark dataset and metrics for it. Thereafter we adapt a well known global illumination model (i.e. radiosity) and we extend it so that to overcome some of its basic limitations related to the assumption of point based only light sources or the adaption of only isotropic light perception sensors. We show that this extended radiosity numerical model can challenge the state-of-the-art in obtaining accurate dense spatial light measurements over time and in different scenarios. Finally we combine the latter model with human-centric sensing information and present how this could be beneficial for smart lighting applications related to quality lighting and power efficiency. Thus, with this work we contribute by setting the baselines for using an RGBD camera input as the only requirement to light modeling methods for light estimation in real life scenarios, and open a new applicability where the illumination modeling can be turned into an interactive process, allowing for real-time modifications and immediate feedback on the spatial illumination of a scene over time towards quality lighting and energy efficient solutions

    D1.3 -- Short Report on the First Draft Multi-link Channel Model

    Get PDF

    Calibration of Beacons for Indoor Environments based on a Digital Map and Heuristic Information

    Get PDF
    This paper proposes an algorithm for calibrating the position of beacons which are placed on the ceiling of an indoor environment. In this context, the term calibration is used to estimate the position coordinates of a beacon related to a known reference system in a map. The positions of a set of beacons are used for indoor positioning purposes. The operation of the beacons can be based on different technologies such as radiofrequency (RF), infrared (IR) or ultrasound (US), among others. In this case we are interested in the positions of several beacons that compose an Ultrasonic Local Positioning System (ULPS) placed on different strategic points of the building. The calibration proposal uses several distances from a beacon to the neighbor walls measured by a laser meter. These measured distances, the map of the building in a vector format and other heuristic data (such as the region in which the beacon is located, the approximate orientation of the distance measurements to the walls and the equations in the map coordinate system of the line defining these walls) are the inputs of the proposed algorithm. The output is the best estimation of the position of the beacon. The process is repeated for all the beacons. To find the best estimation of the position of the beacons we have implemented a numerical minimization based on the use of a Genetic Algorithm (GA) and a Harmony Search (HS) methods. The proposal has been validated with simulations and real experiments, obtaining the positions of the beacons and an estimation of the error associated that depends on which walls (and the angle of incidence of the laser) are selected to make the distance measurements.Universidad de AlcaláJunta de Comunidades de Castilla-La ManchaMinisterio de Economía y Competitivida
    • …
    corecore