4,024 research outputs found

    Integer polyhedra for program analysis

    Get PDF
    Polyhedra are widely used in model checking and abstract interpretation. Polyhedral analysis is effective when the relationships between variables are linear, but suffers from imprecision when it is necessary to take into account the integrality of the represented space. Imprecision also arises when non-linear constraints occur. Moreover, in terms of tractability, even a space defined by linear constraints can become unmanageable owing to the excessive number of inequalities. Thus it is useful to identify those inequalities whose omission has least impact on the represented space. This paper shows how these issues can be addressed in a novel way by growing the integer hull of the space and approximating the number of integral points within a bounded polyhedron

    The closure constraint for the hyperbolic tetrahedron as a Bianchi identity

    Full text link
    The closure constraint is a central piece of the mathematics of loop quantum gravity. It encodes the gauge invariance of the spin network states of quantum geometry and provides them with a geometrical interpretation: each decorated vertex of a spin network is dual to a quantized polyhedron in R3\mathbb{R}^{3}. For instance, a 4-valent vertex is interpreted as a tetrahedron determined by the four normal vectors of its faces. We develop a framework where the closure constraint is re-interpreted as a Bianchi identity, with the normals defined as holonomies around the polyhedron faces of a connection (constructed from the spinning geometry interpretation of twisted geometries). This allows us to define closure constraints for hyperbolic tetrahedra (living in the 3-hyperboloid of unit future-oriented spacelike vectors in R3,1\mathbb{R}^{3,1}) in terms of normals living all in SU(2)SU(2) or in SB(2,C)SB(2,\mathbb{C}). The latter fits perfectly with the classical phase space developed for qq-deformed loop quantum gravity supposed to account for a non-vanishing cosmological constant Λ>0\Lambda>0. This is the first step towards interpreting qq-deformed twisted geometries as actual discrete hyperbolic triangulations.Comment: 31 page

    Random perfect lattices and the sphere packing problem

    Full text link
    Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily by an algorithm. Their number however grows super-exponentially with the dimension so to get an idea of their properties we propose to study a randomized version of the algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte-Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best know packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A_d and D_d) and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a competitor, in which their packing fraction decreases super-exponentially, namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure

    An alternative to the conventional micro-canonical ensemble

    Full text link
    Usual approach to the foundations of quantum statistical physics is based on conventional micro-canonical ensemble as a starting point for deriving Boltzmann-Gibbs (BG) equilibrium. It leaves, however, a number of conceptual and practical questions unanswered. Here we discuss these questions, thereby motivating the study of a natural alternative known as Quantum Micro-Canonical (QMC) ensemble. We present a detailed numerical study of the properties of the QMC ensemble for finite quantum systems revealing a good agreement with the existing analytical results for large quantum systems. We also propose the way to introduce analytical corrections accounting for finite-size effects. With the above corrections, the agreement between the analytical and the numerical results becomes very accurate. The QMC ensemble leads to an unconventional kind of equilibrium, which may be realizable after strong perturbations in small isolated quantum systems having large number of levels. We demonstrate that the variance of energy fluctuations can be used to discriminate the QMC equilibrium from the BG equilibrium. We further suggest that the reason, why BG equilibrium commonly occurs in nature rather than the QMC-type equilibrium, has something to do with the notion of quantum collapse.Comment: 25 pages, 6 figure
    corecore