302 research outputs found

    Data Censoring with Set-Membership Affine Projection Algorithm

    Get PDF
    In this paper, the set-membership affine projection (SM-AP) algorithm is utilized to censor non-informative data in big data applications. To this end, the probability distribution of the additive noise signal and the excess of the mean-squared error (EMSE) in steady-state are employed in order to estimate the threshold parameter of the single threshold SM-AP (ST-SM-AP) algorithm aiming at attaining the desired update rate. Furthermore, by defining an acceptable range for the error signal, the double threshold SM-AP (DT-SM-AP) algorithm is proposed to detect very large errors due to the irrelevant data such as outliers. The DT-SM-AP algorithm can censor non-informative and irrelevant data in big data applications, and it can improve the misalignment and convergence rate of the learning process with high computational efficiency. The simulation and numerical results corroborate the superiority of the proposed algorithms over traditional algorithms

    A dynamic approach to rebalancing bike-sharing systems

    Get PDF
    Bike-sharing services are flourishing in Smart Cities worldwide. They provide a low-cost and environment-friendly transportation alternative and help reduce traffic congestion. However, these new services are still under development, and several challenges need to be solved. A major problem is the management of rebalancing trucks in order to ensure that bikes and stalls in the docking stations are always available when needed, despite the fluctuations in the service demand. In this work, we propose a dynamic rebalancing strategy that exploits historical data to predict the network conditions and promptly act in case of necessity. We use Birth-Death Processes to model the stations' occupancy and decide when to redistribute bikes, and graph theory to select the rebalancing path and the stations involved. We validate the proposed framework on the data provided by New York City's bike-sharing system. The numerical simulations show that a dynamic strategy able to adapt to the fluctuating nature of the network outperforms rebalancing schemes based on a static schedule

    Stochastic Bandit Models for Delayed Conversions

    Full text link
    Online advertising and product recommendation are important domains of applications for multi-armed bandit methods. In these fields, the reward that is immediately available is most often only a proxy for the actual outcome of interest, which we refer to as a conversion. For instance, in web advertising, clicks can be observed within a few seconds after an ad display but the corresponding sale --if any-- will take hours, if not days to happen. This paper proposes and investigates a new stochas-tic multi-armed bandit model in the framework proposed by Chapelle (2014) --based on empirical studies in the field of web advertising-- in which each action may trigger a future reward that will then happen with a stochas-tic delay. We assume that the probability of conversion associated with each action is unknown while the distribution of the conversion delay is known, distinguishing between the (idealized) case where the conversion events may be observed whatever their delay and the more realistic setting in which late conversions are censored. We provide performance lower bounds as well as two simple but efficient algorithms based on the UCB and KLUCB frameworks. The latter algorithm, which is preferable when conversion rates are low, is based on a Poissonization argument, of independent interest in other settings where aggregation of Bernoulli observations with different success probabilities is required.Comment: Conference on Uncertainty in Artificial Intelligence, Aug 2017, Sydney, Australi

    Some statistical models for high-dimensional data

    Get PDF

    Hardware acceleration for power efficient deep packet inspection

    Get PDF
    The rapid growth of the Internet leads to a massive spread of malicious attacks like viruses and malwares, making the safety of online activity a major concern. The use of Network Intrusion Detection Systems (NIDS) is an effective method to safeguard the Internet. One key procedure in NIDS is Deep Packet Inspection (DPI). DPI can examine the contents of a packet and take actions on the packets based on predefined rules. In this thesis, DPI is mainly discussed in the context of security applications. However, DPI can also be used for bandwidth management and network surveillance. DPI inspects the whole packet payload, and due to this and the complexity of the inspection rules, DPI algorithms consume significant amounts of resources including time, memory and energy. The aim of this thesis is to design hardware accelerated methods for memory and energy efficient high-speed DPI. The patterns in packet payloads, especially complex patterns, can be efficiently represented by regular expressions, which can be translated by the use of Deterministic Finite Automata (DFA). DFA algorithms are fast but consume very large amounts of memory with certain kinds of regular expressions. In this thesis, memory efficient algorithms are proposed based on the transition compressions of the DFAs. In this work, Bloom filters are used to implement DPI on an FPGA for hardware acceleration with the design of a parallel architecture. Furthermore, devoted at a balance of power and performance, an energy efficient adaptive Bloom filter is designed with the capability of adjusting the number of active hash functions according to current workload. In addition, a method is given for implementation on both two-stage and multi-stage platforms. Nevertheless, false positive rates still prevents the Bloom filter from extensive utilization; a cache-based counting Bloom filter is presented in this work to get rid of the false positives for fast and precise matching. Finally, in future work, in order to estimate the effect of power savings, models will be built for routers and DPI, which will also analyze the latency impact of dynamic frequency adaption to current traffic. Besides, a low power DPI system will be designed with a single or multiple DPI engines. Results and evaluation of the low power DPI model and system will be produced in future

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    The solution of traffic signal timing by using traffic intensity estimation and fuzzy logic

    Get PDF
    This study aims at calculating the traffic signal timing that suits traffic intensity at intersections studied in the inner city of Ubon Rachathani Provice, Thailand. The mixed models between maximum likelihood estimation and Bayesian inference are presented to estimate traffic intensity. A queuing system is used to generate the performance of traffic flow. A fuzzy logic system is applied to calculate the optimal length of each phase of the cycle. The fortran language is used to produce the computer program for computation. The algorithm of the computer programming is based on EM algorithm, Markov Chain Monte Carlo algorithm, queuing generation and fuzzy logic. The output of traffic signal timing from the fuzzy controller are longer than the traffic signal timing from the conventional controller. Cost function is used to evaluate the efficiency of the traffic controller. The result of the evaluation shows that fuzzy controller is more efficient than a conventional controller
    corecore