2,409 research outputs found

    A quantum-inspired version of the nearest mean classifier

    Get PDF
    We introduce a framework suitable for describing standard classification problems using the mathematical language of quantum states. In particular, we provide a one-to-one correspondence between real objects and pure density operators. This correspondence enables us: (1) to represent the nearest mean classifier (NMC) in terms of quantum objects, (2) to introduce a quantum-inspired version of the NMC called quantum classifier (QC). By comparing the QC with the NMC on different datasets, we show how the first classifier is able to provide additional information that can be beneficial on a classical computer with respect to the second classifier

    Classification Problem in a Quantum Framework

    Full text link
    The aim of this paper is to provide a quantum counterpart of the well known minimum-distance classifier named Nearest Mean Classifier (NMC). In particular, we refer to the following previous works: i) in Sergioli et al. 2016, we have introduced a detailed quantum version of the NMC, named Quantum Nearest Mean Classifier (QNMC), for two-dimensional problems and we have proposed a generalization to abitrary dimensions; ii) in Sergioli et al. 2017, the n-dimensional problem was analyzed in detail and a particular encoding for arbitrary n-feature vectors into density operators has been presented. In this paper, we introduce a new promizing encoding of arbitrary n-dimensional patterns into density operators, starting from the two-feature encoding provided in the first work. Further, unlike the NMC, the QNMC shows to be not invariant by rescaling the features of each pattern. This property allows us to introduce a free parameter whose variation provides, in some case, an improvement of the QNMC performance. We show experimental results where: i) the NMC and QNMC performances are compared on different datasets; ii) the effects of the non-invariance under uniform rescaling for the QNMC are investigated.Comment: 11 pages, 2 figure

    Advances in quantum machine learning

    Get PDF
    Here we discuss advances in the field of quantum machine learning. The following document offers a hybrid discussion; both reviewing the field as it is currently, and suggesting directions for further research. We include both algorithms and experimental implementations in the discussion. The field's outlook is generally positive, showing significant promise. However, we believe there are appreciable hurdles to overcome before one can claim that it is a primary application of quantum computation.Comment: 38 pages, 17 Figure

    Support vector machines with quantum state discrimination

    Get PDF
    We analyze possible connections between quantum-inspired classifications and support vector machines. Quantum state discrimination and optimal quantum measurement are useful tools for classification problems. In order to use these tools, feature vectors have to be encoded in quantum states represented by density operators. Classification algorithms inspired by quantum state discrimination and implemented on classic computers have been recently proposed. We focus on the implementation of a known quantum-inspired classifier based on Helstrom state discrimination showing its connection with support vector machines and how to make the classification more efficient in terms of space and time acting on quantum encoding. In some cases, traditional methods provide better results. Moreover, we discuss the quantum-inspired nearest mean classification

    An efficient geometric approach to quantum-inspired classifications

    Get PDF
    Optimal measurements for the discrimination of quantum states are useful tools for classification problems. In order to exploit the potential of quantum computers, feature vectors have to be encoded into quantum states represented by density operators. However, quantum-inspired classifiers based on nearest mean and on Helstrom state discrimination are implemented on classical computers. We show a geometric approach that improves the efficiency of quantum-inspired classification in terms of space and time acting on quantum encoding and allows one to compare classifiers correctly in the presence of multiple preparations of the same quantum state as input. We also introduce the nearest mean classification based on Bures distance, Hellinger distance and Jensen-Shannon distance comparing the performance with respect to well-known classifiers applied to benchmark datasets

    Quantum-inspired algorithm for direct multi-class classification

    Get PDF
    Over the last few decades, quantum machine learning has emerged as a groundbreaking discipline. Harnessing the peculiarities of quantum computation for machine learning tasks offers promising advantages. Quantum-inspired machine learning has revealed how relevant benefits for machine learning problems can be obtained using the quantum information theory even without employing quantum computers. In the recent past, experiments have demonstrated how to design an algorithm for binary classification inspired by the method of quantum state discrimination, which exhibits high performance with respect to several standard classifiers. However, a generalization of this quantuminspired binary classifier to a multi-class scenario remains nontrivial. Typically, a simple solution in machine learning decomposes multi-class classification into a combinatorial number of binary classifications, with a concomitant increase in computational resources. In this study, we introduce a quantum-inspired classifier that avoids this problem. Inspired by quantum state discrimination, our classifier performs multi-class classification directly without using binary classifiers. We first compared the performance of the quantum-inspired multi-class classifier with eleven standard classifiers. The comparison revealed an excellent performance of the quantum-inspired classifier. Comparing these results with those obtained using the decomposition in binary classifiers shows that our method improves the accuracy and reduces the time complexity. Therefore, the quantum-inspired machine learning algorithm proposed in this work is an effective and efficient framework for multi-class classification. Finally, although these advantages can be attained without employing any quantum component in the hardware, we discuss how it is possible to implement the model in quantum hardware

    A quantum-inspired classifier for clonogenic assay evaluations.

    Get PDF
    Recent advances in Quantum Machine Learning (QML) have provided benefits to several computational processes, drastically reducing the time complexity. Another approach of combining quantum information theory with machine learning-without involving quantum computers-is known as Quantum-inspired Machine Learning (QiML), which exploits the expressive power of the quantum language to increase the accuracy of the process (rather than reducing the time complexity). In this work, we propose a large-scale experiment based on the application of a binary classifier inspired by quantum information theory to the biomedical imaging context in clonogenic assay evaluation to identify the most discriminative feature, allowing us to enhance cell colony segmentation. This innovative approach offers a two-fold result: (1) among the extracted and analyzed image features, homogeneity is shown to be a relevant feature in detecting challenging cell colonies; and (2) the proposed quantum-inspired classifier is a novel and outstanding methodology, compared to conventional machine learning classifiers, for the evaluation of clonogenic assays

    Hierarchical quantum classifiers

    Get PDF
    Quantum circuits with hierarchical structure have been used to perform binary classification of classical data encoded in a quantum state. We demonstrate that more expressive circuits in the same family achieve better accuracy and can be used to classify highly entangled quantum states, for which there is no known efficient classical method. We compare performance for several different parameterizations on two classical machine learning datasets, Iris and MNIST, and on a synthetic dataset of quantum states. Finally, we demonstrate that performance is robust to noise and deploy an Iris dataset classifier on the ibmqx4 quantum computer
    corecore