2,745 research outputs found

    A Review of Artificial Neural Networks Application to Stock Market Predictions

    Get PDF
    The purpose of this paper is to review artificial neural network applications used in the field of stock price forecasting. The field of stock price forecasting has increasingly grown to be an important subject matter for researchers, everyday investors and practitioners in the finance domain as it aids financial decision making. This study brings to attention some of the neural network applications used in stock price forecasting focusing on application comparisons on different stock market data and the gaps that can be worked on in the foreseeable future. This work makes an introduction of neural network applications to those novels in the field of artificial intelligence. Keywords: Neural Networks, Forecasting Stock Price. Financial Markets, Complexity, Error Measures, Decision Makin

    A Quantum based Evolutionary Algorithm for Stock Index and Bitcoin Price Forecasting

    Get PDF
    Quantum computing has emerged as a new dimension with various applications in different fields like robotic, cryptography, uncertainty modeling etc. On the other hand, nature inspired techniques are playing vital role in solving complex problems through evolutionary approach. While evolutionary approaches are good to solve stochastic problems in unbounded search space, predicting uncertain and ambiguous problems in real life is of immense importance. With improved forecasting accuracy many unforeseen events can be managed well. In this paper a novel algorithm for Fuzzy Time Series (FTS) prediction by using Quantum concepts is proposed in this paper. Quantum Evolutionary Algorithm (QEA) is used along with fuzzy logic for prediction of time series data. QEA is applied on interval lengths for finding out optimized lengths of intervals producing best forecasting accuracy. The algorithm is applied for forecasting Taiwan Futures Exchange (TIAFEX) index as well as for Bitcoin crypto currency time series data as a new approach. Model results were compared with many preceding algorithms

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    Interpreting Housing Prices with a MultidisciplinaryApproach Based on Nature-Inspired Algorithms and Quantum Computing

    Get PDF
    Current technology still does not allow the use of quantum computers for broader and individual uses; however, it is possible to simulate some of its potentialities through quantum computing. Quantum computing can be integrated with nature-inspired algorithms to innovatively analyze the dynamics of the real estate market or any other economic phenomenon. With this main aim, this study implements a multidisciplinary approach based on the integration of quantum computing and genetic algorithms to interpret housing prices. Starting from the principles of quantum programming, the work applies genetic algorithms for the marginal price determination of relevant real estate characteristics for a particular segment of Naples’ real estate market. These marginal prices constitute the quantum program inputs to provide, as results, the purchase probabilities corresponding to each real estate characteristic considered. The other main outcomes of this study consist of a comparison of the optimal quantities for each real estate characteristic as determined by the quantum program and the average amounts of the same characteristics but relative to the real estate data sampled, as well as the weights of the same characteristics obtained with the implementation of genetic algorithms. With respect to the current state of the art, this study is among the first regarding the application of quantum computing to interpretation of selling prices in local real estate markets

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy
    • 

    corecore