43,208 research outputs found

    Quantum-Enhanced Simulation-Based Optimization

    Full text link
    In this paper, we introduce a quantum-enhanced algorithm for simulation-based optimization. Simulation-based optimization seeks to optimize an objective function that is computationally expensive to evaluate exactly, and thus, is approximated via simulation. Quantum Amplitude Estimation (QAE) can achieve a quadratic speed-up over classical Monte Carlo simulation. Hence, in many cases, it can achieve a speed-up for simulation-based optimization as well. Combining QAE with ideas from quantum optimization, we show how this can be used not only for continuous but also for discrete optimization problems. Furthermore, the algorithm is demonstrated on illustrative problems such as portfolio optimization with a Value at Risk constraint and inventory management.Comment: 9 pages, 9 figure

    CQICO and multiobjective thermal optimization for high-speed PM generator

    Get PDF
    This paper proposes a novel Continuous Quantum Immune Clonal Optimization (CQICO) algorithm for thermal optimization on an 117kW high speed permanent magnet generator (HSPMG). The proposed algorithm mixes the Quantum Computation into the Immune Cloning Algorithm and causes better population diversity, higher global searching ability, and faster convergence which approved by simulation results. Then, the improved algorithm is applied to seek an optimized slot groove and improve HSPMG thermal performance, in which the 3-D fluid-thermal coupling analyses are processed with a multi-objective optimal group composed of the highest temperature and the temperature difference. Both the proposed algorithm and the obtained conclusions are of significances in the design and optimization of the cooling system in electric machines

    Pulse Width Modulation for Speeding Up Quantum Optimal Control Design

    Full text link
    This paper focuses on accelerating quantum optimal control design for complex quantum systems. Based on our previous work [{arXiv:1607.04054}], we combine Pulse Width Modulation (PWM) and gradient descent algorithm into solving quantum optimal control problems, which shows distinct improvement of computational efficiency in various cases. To further apply this algorithm to potential experiments, we also propose the smooth realization of the optimized control solution, e.g. using Gaussian pulse train to replace rectangular pulses. Based on the experimental data of the D-Norleucine molecule, we numerically find optimal control functions in 33-qubit and 66-qubit systems, and demonstrate its efficiency advantage compared with basic GRAPE algorithm
    • …
    corecore