3,975 research outputs found

    Quantum Lazy Sampling and Game-Playing Proofs for Quantum Indifferentiability

    Get PDF
    Game-playing proofs constitute a powerful framework for non-quantum cryptographic security arguments, most notably applied in the context of indifferentiability. An essential ingredient in such proofs is lazy sampling of random primitives. We develop a quantum game-playing proof framework by generalizing two recently developed proof techniques. First, we describe how Zhandry's compressed quantum oracles~(Crypto'19) can be used to do quantum lazy sampling of a class of non-uniform function distributions. Second, we observe how Unruh's one-way-to-hiding lemma~(Eurocrypt'14) can also be applied to compressed oracles, providing a quantum counterpart to the fundamental lemma of game-playing. Subsequently, we use our game-playing framework to prove quantum indifferentiability of the sponge construction, assuming a random internal function

    Inverting a permutation is as hard as unordered search

    Full text link
    We show how an algorithm for the problem of inverting a permutation may be used to design one for the problem of unordered search (with a unique solution). Since there is a straightforward reduction in the reverse direction, the problems are essentially equivalent. The reduction we present helps us bypass the hybrid argument due to Bennett, Bernstein, Brassard, and Vazirani (1997) and the quantum adversary method due to Ambainis (2002) that were earlier used to derive lower bounds on the quantum query complexity of the problem of inverting permutations. It directly implies that the quantum query complexity of the problem is asymptotically the same as that for unordered search, namely in Theta(sqrt(n)).Comment: 5 pages. Numerous changes to improve the presentatio

    Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem

    Get PDF
    Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.Comment: 21 page

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor
    corecore