41,149 research outputs found

    Unitary realization of wavefunction collapse

    Full text link
    Recent quantum reconstruction projects demand pure unitary time evolution which seems to contradict the collapse postulate. A natural unitary realization of wavefunction collapse is built using Grothendick group construction for the tensor product commutative monoid. Envariance and quantum Darwinism are key ingredients in the proof.Comment: 4 page

    The Problem of Confirmation in the Everett Interpretation

    Get PDF
    I argue that the Oxford school Everett interpretation is internally incoherent, because we cannot claim that in an Everettian universe the kinds of reasoning we have used to arrive at our beliefs about quantum mechanics would lead us to form true beliefs. I show that in an Everettian context, the experimental evidence that we have available could not provide empirical confirmation for quantum mechanics, and moreover that we would not even be able to establish reference to the theoretical entities of quantum mechanics. I then consider a range of existing Everettian approaches to the probability problem and show that they do not succeed in overcoming this incoherence

    Subjective probability and quantum certainty

    Get PDF
    In the Bayesian approach to quantum mechanics, probabilities--and thus quantum states--represent an agent's degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for the general claim that probabilities always represent degrees of belief. We then argue that a quantum state prepared by some physical device always depends on an agent's prior beliefs, implying that the probability-1 predictions derived from that state also depend on the agent's prior beliefs. Quantum certainty is therefore always some agent's certainty. Conversely, if facts about an experimental setup could imply agent-independent certainty for a measurement outcome, as in many Copenhagen-like interpretations, that outcome would effectively correspond to a preexisting system property. The idea that measurement outcomes occurring with certainty correspond to preexisting system properties is, however, in conflict with locality. We emphasize this by giving a version of an argument of Stairs [A. Stairs, Phil. Sci. 50, 578 (1983)], which applies the Kochen-Specker theorem to an entangled bipartite system.Comment: 20 pages RevTeX, 1 figure, extensive changes in response to referees' comment

    A security proof of quantum cryptography based entirely on entanglement purification

    Get PDF
    We give a proof that entanglement purification, even with noisy apparatus, is sufficient to disentangle an eavesdropper (Eve) from the communication channel. In the security regime, the purification process factorises the overall initial state into a tensor-product state of Alice and Bob, on one side, and Eve on the other side, thus establishing a completely private, albeit noisy, quantum communication channel between Alice and Bob. The security regime is found to coincide for all practical purposes with the purification regime of a two-way recurrence protocol. This makes two-way entanglement purification protocols, which constitute an important element in the quantum repeater, an efficient tool for secure long-distance quantum cryptography.Comment: Follow-up paper to quant-ph/0108060, submitted to PRA; 24 pages, revex

    In defense of the epistemic view of quantum states: a toy theory

    Full text link
    We present a toy theory that is based on a simple principle: the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge. A wide variety of quantum phenomena are found to have analogues within this toy theory. Such phenomena include: the noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal state inverter, the distinction between bi-partite and tri-partite entanglement, the monogamy of pure entanglement, no cloning, no broadcasting, remote steering, teleportation, dense coding, mutually unbiased bases, and many others. The diversity and quality of these analogies is taken as evidence for the view that quantum states are states of incomplete knowledge rather than states of reality. A consideration of the phenomena that the toy theory fails to reproduce, notably, violations of Bell inequalities and the existence of a Kochen-Specker theorem, provides clues for how to proceed with this research program.Comment: 32 pages, REVTEX, based on a talk given at the Rob Clifton Memorial Conference, College Park, May 2003; v2: minor modifications throughout, updated reference
    • …
    corecore